Pages

Thursday, 22 June 2023

Autism Research Merry-go-round Keeps Turning

 


Today’s post again shows that many issues raised in previous posts keep on coming back  is that good news? Only you can decide.

I start with the “old chestnut” (English idiom to imply “a tired old story”) of the Autism Tsunami. 

Then we see what has come up in the world of autism interventions in the research in the last 3 weeks, most of which regular readers will already be aware of.

·        Autism Tsunami – real or not?

·        Vitamin D

·        Bumetanide

·        Ibudilast

·        Niclosamide

·         Non-invasive brain stimulation

·         Simvastatin 

I noted the research about autism incidence coming from Northern Ireland because it was published in the Belfast News Letter.  These days it has a tiny subscription, but I am one of those who know it is the world's oldest English-language general daily newspaper still in publication, having first been printed in 1737. In 1972 a bomb warning was called in to the paper's office and, as people evacuated, an explosion went off nearby killing several people and injuring many more. Back in the early 1990s, when some people in Northern Ireland were still blowing up others with bombs, I made a visit to Northern Ireland to meet the management of this newspaper. 

Their recent article on autism incidence is very well researched considering how only about 8,000 copies are published. Keep up the good work!

Idea that 5% of all Northern Ireland's children are autistic is 'a fantasy' claims international expert

Professor Laurent Mottron was speaking to the News Letter following a claim that the rate of autism in Northern Ireland is double the rate in the rest of the UK.

Back in 2019 Prof Mottron had authored a report warning about a tsunami of over-diagnosis, saying that soon "the definition of autism may get too vague to be meaningful, trivializing the condition"

“If this trend holds, the objective difference between people with autism and the general population will disappear in less than 10 years," he had said then – and has now indicated that this “fuzziness” is what’s helping swell the numbers in Northern Ireland.

Meanwhile Jill Escher, the president of the National Council on Severe Autism, takes a different view.

She says that evidence indicates the "skyrocketing" rate of autism in Northern Ireland is real, adding: "It boggles my mind that it is not the subject of the highest possible alarm and inquiry."

"One in 20 children in Northern Ireland of school age has a diagnosis of autism," he told MPs.

"[It is] one in 57 in the rest of the UK. The need in Northern Ireland is significantly different."

To put that in perspective, that would mean 5% of Northern Irish children are diagnosed with autism, compared with 1.8% in the rest of the UK.

Prof Mottron, a psychiatrist based at Montreal University, told the News Letter "numbers such as 5% are pure fantasy... these numbers correspond to the part of the general population which has less overt socialisation, which has minimally to do with prototypical autism". 

There is a "current fuzziness of autism diagnosis and over-inclusivity," he said, leading to "a situation of perfect confusion between autistic traits and prototypical autism" (that is, mixing up people who exhibit some tendencies of autistic people with people who actually have the full-blown condition). 

"The scientific 'quasi consensus' would be around 1% everywhere on the planet,” he added.

 

So on one side we have Jill Escher and her NCSA and on the other we have a French/Canadian researcher.  This time Laurent Mottron but in my blog posts I quoted Éric Fombonne.

A paper that was mentioned both in my blog and critiqued by Jill about autism incidence and cost just got retracted.  In reality a better word is “cancelled.”  The 3 authors are very much in the politically incorrect camp of the autism debate.

I was surprised it ever got published.  

Controversial ‘cost of autism’ paper retracted 

Citing methodological issues and undeclared conflicts of interest, an autism journal has retracted a paper that forecast the prevalence and cost of autism.

The retraction note, posted last week, comes two years after Spectrum reported on backlash surrounding the paper, which was published in the Journal of Autism and Developmental Disorders in July 2021. A month after publication, the journal added an editor’s note that the study was under investigation because of criticisms of its conclusions. 

“I am glad to see that it was retracted, although at a pace that maybe is a bit frustrating in terms of how long it took. But it was the right choice,” says Brittany Hand, associate professor of health and rehabilitation sciences at Ohio State University in Columbus.

Outside experts who reviewed the paper on the journal’s behalf found that it misrepresented the rise in autism diagnoses and gave “insufficient attention” to some potential causes of the increase, such as improved surveillance and changes to the diagnostic criteria. The authors also used “higher estimates and assumptions that inflated costs,” according to the retraction note.

The authors — Mark Blaxill, Toby Rogers and Cynthia Nevison — all disagree with the journal’s decision, the note also says.

The cancelled paper is here:-

Autism Tsunami: the Impact of Rising Prevalence on the Societal Cost of Autism in the United States

 

I assume Blaxill was the driving force behind all the math, because he is the ex- management consultant, with a son with severe autism that his dad attributes to vaccines.

What I found bizarre in their paper was that they has a prevention scenario, based on what they think has already happened in rich parts of California, where they think autism incidence is falling.  It is not falling, all that is happening is that wealthy Californians are paying for treatment using insurance or their own money, and no longer burdening the State.

The “rainbow” researchers that wanted the paper retracted think that preventing autism is akin to eugenics and Dr Mengele. According to Peter, treating autism is good, while Dr Josef Mengele, byname Todesengel (German: “Angel of Death”) was as bad as you can get.    

Jill Escher and her NCSA think that you cannot prevent autism.  According to Peter, you can both minimize the incidence and severity of autism. 

A bugbear of our reader Tanya is that the NCSA have a pet hate of facilitated communication and in particular the rapid prompting method (RPM). This method worked for Tanya’s son and it opened the door to independent, un-facilitated communication. 

Always keep an open mind.

 

 

 

“our Prevention scenario is based on real rates observed among wealthy white and Asian children in the California DDS.  Severe ASD prevalence has flattened and even declined among these children since birth year 2000, suggesting that wealthy parents have been making changes that effectively lower their children’s risk of developing ASD. The Prevention scenario assumes that these parental strategies and opportunities already used by wealthy parents to lower their children’s risk of ASD can be identified and made available rapidly to lower income children and ethnic minorities, who are currently experiencing the most rapid growth in ASD prevalence”

 

New Paper Makes Case that Autism Tsunami May Threaten American Economy

A major weakness in the analysis was the “Prevention Scenario” in which future costs were projected based on “what might be possible if strategies for reducing ASD risk are identified and addressed in the near future.” As I think everyone knows, at this time there is no way to prevent autism. But the authors use the observation that autism in the DDS is declining among wealthier white families, and thus “suggesting that wealthy parents have been making changes that effectively lower their children’s risk of developing ASD.” No, it’s far more likely that wealthier families are not entering their children into the system because they access services through insurance and school districts instead.

 

Vitamin D as a cause of autism has been discussed for decades.  As the title below puts it – a never-ending story. Our reader Seth Bittker even wrote a paper about it. He later wrote a paper about the use Acetaminophen/Paracetamol in children under two as a risk factor in developing autism. Good work Seth!

 

Maternal Vitamin D deficiency and brain functions: a never-ending story 

A large number of observational studies highlighted the prevalence rates of vitamin D insufficiency and deficiency in many populations as pregnant women. Vitamin D is well known to have a crucial role in differentiation and proliferation, as well as neurotrophic and neuroprotective actions in brain. Then, this micronutrient can modulate the neurotransmission and synaptic plasticity. Recent results from animal and epidemiological studies indicated that maternal vitamin D deficiency is associated with a wide range of neurobiological disease including autism, schizophrenia, depression, multiple sclerosis or developmental defect. The aim of this review is to provide a state of the art on the effect of maternal vitamin D deficiency on brain functions and development.

4.2.2. Autism

Autism spectrum disorder (ASD) is a complex neurodevelopmental disease with repetitive behaviour and difficulties in social interaction, communication and learning. Several murine studies and cohorts have demonstrated that early exposure to low levels of VD during pregnancy could be a risk factor for ASD. In 2019, Ali et al. aimed to find out the impact of a maternal VDD on early postnatal, adolescent and adult offspring. By assessing righting reflex and negative geotaxis, they found out that the pups from deficient dams showed a delay in their motor development. P12 rats from deficient females also exhibited increased ultrasound vocalization indicating an alteration in their vocal communication. Adolescent and young adult rats displayed an altered stereotyped repetitive behaviour as they had a reduced digging behaviour. Adolescent rats had less social interaction with longer latency to interact, which was not found in adult rats; however, adults were more hyperactive but showed no anxiety like behaviour.  In another animal study, maternal VDD induced an increase in the vocalizations of the pups accompanied with a decrease in cortical FoxP2, decrease in social behaviour and impaired learning and memory were observed in adult males (Table 1). Using data from the Stockholm youth cohort, Magnusson et al. examined a population of 4-17-year-old children exposed to low levels of VD during gestation and was able to report a positive association between maternal VDD and ASD. Analysing the same cohort, Lee et al. suggested that high levels of VD during pregnancy were associated with a moderate decrease in risk of ASD in the offspring. A prospective study of a multi-ethnic cohort in the Netherlands (generation R study) has also shown an association between maternal mid-gestation VDD and a two-fold increase in the risk of autism in children (Table 2). Interestingly, VD supplementation seems to clinically improve ASD symptoms of affected children.

 

People do associate this blog with Bumetanide.  Yet another paper has been published showing the benefits of this therapy for autism.

 

EEG-based brain connectivity analysis in autism spectrum disorder: Unravelling the effects of bumetanide treatment 


Highlights

 

·        We investigated the nonlinear brain connectivity and topological changes in brain networks of people with autism spectrum disorders (ASD) after a three-month course of bumetanide treatment.

·        We found statistically significant differences between pre and post intervention in the connectivity patterns using repeated measures analysis of variance (ANOVA).

·        We found that the number of strong connections in response to sad image stimuli seem to be less compared with that of the other two stimuli, especially in the central area.

·        We found that the changes in brain connectivity between pre and post intervention is more significant in response to sad image stimuli.

 

Emerging evidence suggests that cognitive impairment associated with brain network disorders in people with autism could be improved with medications such as bumetanide. However, the extent to which bumetanide is effective in improving brain function in these individuals has not been adequately studied. The main purpose of this study is to investigate the nonlinear brain connectivity and topological changes in brain networks of people with autism spectrum disorders (ASD) after a three-month course of bumetanide treatment. We used electroencephalography (EEG) data of nine participants recorded during the face emotion recognition activity in two stages before and after bumetanide treatment. Brain connectivity matrix was calculated using a neural network-based estimator. Graph criteria and statistical tests have been used to determine the effects of bumetanide treatment on children and adolescents with autism. Bumetanide treatment significantly alters the brain connectivity networks based on stimuli type. Differences in brain connectivity related to the sad stimuli are more significant. The most of the significant changes of the strength graph metric was in the occipital electrodes and electrodes related to the right hemisphere. These results suggest that bumetanide may affect effective connectivity and be used a promising treatment for improving social interactions in patients with autism. It also suggests that brain connectivity patterns can be considered as a neural marker to be used in the development of new therapies. 

I have also covered in sometimes painful details the potential to treat autism and increase cognitive function using PDE (Phosphodiesterase) inhibitors. One of our psychiatrist readers is a huge fan of Pentoxifylline and takes it himself.

I was recently asked how to obtain Ibudilast.  It is approved in Japan as an asthma drug. Sometimes it is called Ketas and you can get it from an “International Pharmacy” in Germany/Switzerland if you have a prescription. 

I also wrote about repurposing Roflumilast, which as Daxas is approved all over the world as a therapy for severe asthma (COPD). This drug at a 1/5th dose has been patented as a cognitive enhancer.

 

Phosphodiesterase inhibitor, ibudilast alleviates core behavioral and biochemical deficits in the prenatal valproic acid exposure model of autism spectrum disorder

 

Autism spectrum disorder (ASD) is categorized as a neurodevelopmental disorder, presenting with a variety of aetiological and phenotypical features. Ibudilast is known to produce beneficial effects in several neurological disorders including neuropathic pain, multiple sclerosis, etc. by displaying its neuroprotective and anti-inflammatory properties. Here, in our study, the pharmacological outcome of ibudilast administration was investigated in the prenatal valproic acid (VPA)-model of ASD in Wistar rats.

Methods

Autistic-like symptoms were induced in Wistar male pups of dams administered with Valproic acid (VPA) on embryonic day 12.5. VPA-exposed male pups were administered with two doses of ibudilast (5 and10 mg/kg) and all the groups were evaluated for behavioral parameters like social interaction, spatial memory/learning, anxiety, locomotor activity, and nociceptive threshold. Further, the possible neuroprotective effect of ibudilast was evaluated by assessing oxidative stress, neuroinflammation (IL-1β, TNF-α, IL-6, IL-10) in the hippocampus, % area of Glial fibrillary acidic protein (GFAP)-positive cells and neuronal damage in the cerebellum.


Key findings: Treatment with ibudilast significantly attenuated prenatal VPA exposure associated social interaction and spatial learning/memory deficits, anxiety, hyperactivity, and increased nociceptive threshold, and it decreased oxidative stress markers, pro-inflammatory markers (IL-1β, TNF-α, IL-6), and % area of GFAP-positive cells and restored neuronal damage.

Conclusions

Ibudilast treatment has restored crucial ASD-related behavioural abnormalities, potentially through neuroprotection. Therefore, benefits of ibudilast administration in animal models of ASD suggest that ibudilast may have therapeutic potential in the treatment of ASD.

 

 

I have also written widely about repurposing certain anti-parasite medicines to treat autism. This is not because I think parasites cause autism, it is the secondary modes of action.

 

 

Repurposing Niclosamide as a plausible neurotherapeutic in autism spectrum disorders, targeting mitochondrial dysfunction: a strong hypothesis

 

 

Autism Spectrum Disorders (ASD) are a complex set of neurodevelopmental manifestations which present in the form of social and communication deficits. Affecting a growing proportion of children worldwide, the exact pathogenesis of this disorder is not very well understood, and multiple signaling pathways have been implicated. Among them, the ERK/MAPK pathway is critical in a number of cellular processes, and the normal functioning of neuronal cells also depends on this cascade. As such, recent studies have increasingly focused on the impact this pathway has on the development of autistic symptoms. Improper ERK signaling is suspected to be involved in neurotoxicity, and the same might be implicated in autism spectrum disorders (ASD), through a variety of effects including mitochondrial dysfunction and oxidative stress. Niclosamide, an antihelminthic and anti-inflammatory agent, has shown potential in inhibiting this pathway, and countering the effects shown by its overactivity in inflammation. While it has previously been evaluated in other neurological disorders like Alzheimer’s Disease and Parkinson’s Disease, as well as various cancers by targeting ERK/MAPK, it’s efficacy in autism has not yet been evaluated. In this article, we attempt to discuss the potential role of the ERK/MAPK pathway in the pathogenesis of ASD, specifically through mitochondrial damage, before moving to the therapeutic potential of niclosamide in the disorder, mediated by the inhibition of this pathway and its detrimental effects of neuronal development.

 

Note that in earlier posts I explored RASopathies as potentially treatable types of intellectual disability (ID). We also have RAS-dependent cancers as a discrete treatable sub-type of cancer.


The ERK/MAPK pathway is known to interact with multiple genes that have been implicated in autism, and genome-wide association analysis of the same have supported these findings. As such, a dysregulation of this pathway has been found to result in many CNS disorders, including ASD-related syndromes, in many studies. These syndromes are collectively known as Rasopathies, due to the fact that the affected genes include those encoding for elements which function together with Ras, a G-protein responsible for activating ERKs (Levitt and Campbell 2009; Tidyman and Rauen 2009). It has been found that ASD is linked to the occurrence of many Rasopathies, and there have been multiple reports suggesting the possible relation of ERK/MAPK pathway defects with the incidence of ASD (Vithayathil et al. 2018; Aluko et al. 2021)⁠⁠. Moreover, a detailed study has found that single nucleotide polymorphisms (SNPs) in the ERK/MAPK-related genes are more common in subjects presenting with idiopathic ASD.

 

Niclosamide is an FDA-approved antihelminthic drug which is routinely used to treat tapeworm infections by inhibiting their mitochondrial oxidative phosphorylation and ATP production. In addition, it has long been known to have significant immunomodulating activity, and has been shown to inhibit a number of signaling pathways, including the Wingless-related integration site (Wnt)/β-catenin, nuclear factor kappa B (Nf-κB), signal transducer and activator of transcription 3 (STAT3), and mammalian target of rapamycin (mTOR) (Chen et al. 2018). However, while these targets are known to be rather well-characterized in terms of the effect that niclosamide has on them, there are also other targets, including the phosphoinositode 3 kinase/Akt (PI3K/Akt) and ERK/MAPK pathways, that are seen to be downregulated by the agent. Hence, given the possible relation of the ERK pathway in autism, there has been interest in the potential role of niclosamide in the management of the prognosis of ASD. This article aims to discuss the possible therapeutic benefit of niclosamide in the treatment of autism spectrum disorders.

 

Now I know that parents like the idea of treating autism with various gadgets you can strap on to your head  things like Transcranial Magnetic Stimulation (TMS). I must say I liked my old post on Photobiomodulation/cold laser/low level laser therapy.


Epiphany: Low Level Laser Therapy (LLLT) for Autism – seems to work in Havana


From China we have a new round-up paper, but the full text does not yet seem to be ready.

 

Non-invasive brain stimulation for Patient with Autism A Systematic Review and Meta-Analysis

Objective: To comprehensively evaluate the efficacy of non-invasive brain stimulation (NIBS) in patients with autism spectrum disorder (ASD) in randomized controlled trials (RCT),providing reference for future research on the same topic.

Methods:Five databases were searched (Pubmed,Web of science,Medline,Embase and Cochrane library) and track relevant references,Meta-analysis was performed using RevMan 5.3 software.

Results: Twenty-two references(829 participants) were included. The results of meta analysis showed that, NIBS had positive effects on repetitive and stereotypical behaviors, cognitive function and executive function in autistic patients. Most of the included studies had a moderate to high risk of bias, Mainly because of the lack of blinding of subjects and assessors to treatment assignment, as well as the lack of continuous observation of treatment effects.

Conclusions: Available evidence supports an improvement in some aspects of NIBS in patients with ASD. However, due to the quality of the original studies and significant publication bias, these evidences must be treated with caution. Further large multicenter randomized double-blind controlled trials and appropriate follow-up observations are needed to further evaluate the specific efficacy of NIBS in patients with ASD.


Unfortunately, the Chinese have concluded that most of these studies are not reliable. So no laser for me to go out and buy just yet.

No need to dent your bank balance with the next therapy.  We are back to one of the world's most prescribed and therefore affordable drugs, its Simvastatin (Zocor). 

There is masses of information in this blog about the potential to treat sub-types of autism with Atorvastatin, Simvastatin or Lovastatin. They are each slightly different.

 

Effect of simvastatin on brain-derived neurotrophic factor (BDNF)/TrkB pathway in hippocampus of autism rat model 

Purpose: To study the effect of simvastatin on behavioral performance in a rat model of autism, and its effect on hippocampal brain-derived BDNF-TrkB pathway. 

Methods: Twelve rats with valproic acid (VPA)-induced autism were randomly divided into model group and simvastatin group, while six healthy rats served as normal control group. Rats in the simvastatin group received the drug (5 mg/kg) via i.p. route, while rats in model group and normal control group were injected with equivalent volume of normal saline in place of simvastatin. Capacity for interaction and repetitive stereotyped behavior, as well as results of Morris water maze test were determined for each group. The expressions of BDNF-TrkB proteins were assayed with immunoblotting. 

Results: The frequencies of sniffing normal saline, alcohol and rat urine were significantly higher in model and simvastatin rats than in normal rats, but they were significantly lower in simvastatin-treated rats than in model rats (p < 0.05). There was higher duration of turning, jumping and grooming in the model group and simvastatin group than in the normal rats, but the duration was significantly reduced in simvastatin rats, relative to model rats. Escape latency times was significantly longer in model and simvastatin rats than in controls, but number of target quadrant crossings was significantly reduced. However, escape latency time was lower in simvastatin rats than in model rats, but number of target quadrant crossings was significantly higher. The model and simvastatin rats had down-regulated levels of BDNF and TrkB protein, relative to control rats, but there were markedly higher levels of these proteins in simvastatin-treated rats than in model rats. 

Conclusion: Simvastatin improves the behavioral performance of autistic rats by regulating BDNF/TrkB signal axis. This finding may be useful in the development of new drugs for treating autism.

  

Conclusion

What is the conclusion? Well, I could say give up reading the new research and just read my old posts.  It seems you are not going to miss very much.

Of course, back in the real world, it is true that things do take time to change and after a few decades the leap might be taken from the research to the doctor’s office.

There already is plenty of research on the causes of autism and what steps can be taken by those who want to treat aspects of it.  It is far from a complete picture, but it is enough to get started.  There are no guarantees of success, but if you want 100% certainty you will wait forever.








Friday, 2 June 2023

Nitric Oxide in Autism - nNOS as a precise target for treatment?

Today’s subject is not new to this blog, it is Nitric Oxide (NO) and how by reducing expression of the enzyme nNOS, which produces NO in neurons, you may reduce the severity of autism symptoms.  Monty has actually been reducing nNOS for several years using Agmatine.

The research is from Israel, which is better known for autism research into cannabis.

Several posts in this blog refer to NO:

https://www.epiphanyasd.com/search/label/Nitric%20Oxide

One introduces nitrosative stress, which is also covered in my book.

Nitrosative Stress, Nitric Oxide and Peroxynitrite


Nitric oxide performs many functions within the body.

I did make the graphic below a few years ago to show what happens to Arginine in the body and the role of my supplement Agmatine.

Arginine is converted to Nitric Oxide in the body by one of 3 enzymes (iNOS, eNOS and nNOS).

eNOS (endothelial nitric oxide synthase) will help expand blood vessels, lowering blood pressure and potentially boosting exercise endurance.

nNOS (neuronal nitric oxide synthase) is involved in the development of nervous system. It functions as a neurotransmitter important in long term potentiation and hence is likely to be important in memory and learning. nNOS has many other physiological functions, including regulation of cardiac function and peristalsis and sexual arousal in males and females.

iNOS (inductible nitric oxide synthase), involved in immune response, and produces NO as an immune defence mechanism, as NO is a free radical with an unpaired electron. It is the proximate cause of septic shock and may function in autoimmune disease.

 

I have used Agmatine as a supplement in my PolyPill for many years. It reduces iNOS and nNOS while increasing eNOS.

Note that you can use polyamines to induce autophagy and this idea is now used to improve cognition in people with dementia. Wheat seedlings and wheat germ are a rich source of polyamines and can simply be added to bread to make it counter some dementia.

 


Nitrosative stress

Nitrosative stress is the lesser known twin of oxidative stress. Both are generally bad for you (unless you have cancer, because cancer cells are vulnerable to it).

Nitrosative stress and oxidative stress both feature in most autism. The more severe the autism the higher the level of nitrosative stress.  Where there is nitrosative stress, expect to also see unusual amounts of NO.

Peroxynitrite from nitrosative stress can be quenched by Leucovorin, AKA calcium folinate. This is Dr Frye’s therapy for folate deficiency, but as I have mentioned previously it also has totally unrelated potential benefits. 

Now to see what the Israelis have been up to.

 

Israeli study reveals potential method for reducing symptoms of autism

Researchers find a direct link between levels of nitric oxide in the brain and condition in mice; reducing the amounts lowers indicators and behaviors. 

Researchers from the Hebrew University of Jerusalem have published a first-of-its-kind study revealing a potential future method for reducing the symptoms of autism among those diagnosed with the common developmental disorder.

Dr Haitham Amal and his team from the School of Pharmacy in the Faculty of Medicine discovered a direct connection between levels of nitric oxide (NO) in the brain and autism, the university said in a statement.

The study, conducted on mice and published Monday in the peer-reviewed Advanced Science journal, demonstrates that autism indicators increases as NO increases in the brain, and that autism indicators and behavior decrease as the levels of NO in the brains of murine models of autism are lowered “in a proactive and controlled manner.” 

 

“Our research showed – in an extraordinary way – that inhibiting the production of NO, specifically in brain neuron cells in mouse models of autism, causes a decrease in autism-like symptoms,” he said. “By inhibiting the production of NO on laboratory animals, they became more ‘social’ and less repetitiveness was observed in their behavior. Additionally, the animals showed interest in new objects and were less anxious. Finally, the decrease in NO levels led to a significant improvement in neuronal indices.”

 

Scientists identify a new molecular mechanism for autism - Advanced Science News

 

After having tested their hypothesis in living mice, the researchers turned their focus to cell cultures. To begin with, they cultured neuronal cells from normal and mutant mouse models. Increasing and decreasing levels of nitric oxide in these cultures led to similar biochemical changes as those seen in experiments with mice.

Having investigated the impact of nitric oxide in mice, Amal’s team sought to confirm their findings in humans. First, they tested neurons that were derived from the stem cells of people with mutations in the SHANK3 gene, living with ASD. These neurons had high levels of proteins that help diagnose stress caused by nitric oxide. When researchers treated these neurons with a nitric oxide inhibitor, the levels of these proteins subsided.

Thereafter, Amal’s lab measured the levels of the same proteins in samples of blood plasma taken from children with ASD. They wanted to validate their results in this demographic. Compared with unaffected children, those with ASD had higher levels of biomarkers that indicate nitric oxide stress.

Deeper analyses revealed that the production of numerous proteins responsible for neuronal development was increased or decreased, differing from their normal levels. Further, using computational analyses, the researchers found that genes involved in several mechanisms connected to ASD development were overrepresented. These genes are key to severing connections between neurons as well as driving inflammation and oxidative stress.

“This research is a significant breakthrough in autism research with the first direct connection made between an increase in the concentration of [nitric oxide] in the brain and autistic behavior,” said Amal. “I am hopeful that with our new understanding of the [nitric oxide] mechanism, we can begin to develop therapeutic drugs for ASD and help millions of children and adults living with autism around the world.”

Amal’s team is exploring the impact of nitric oxide in many more models of autism. “The good news is that we are exploring very similar data,” added Amal.

 

 

The NO Answer for Autism Spectrum Disorder

Autism spectrum disorders (ASDs) include a wide range of neurodevelopmental disorders. Several reports showed that mutations in different high-risk ASD genes lead to ASD. However, the underlying molecular mechanisms have not been deciphered. Recently, they reported a dramatic increase in nitric oxide (NO) levels in ASD mouse models. Here, they conducted a multidisciplinary study to investigate the role of NO in ASD. High levels of nitrosative stress biomarkers are found in both the Shank3 and Cntnap2 ASD mouse models. Pharmacological intervention with a neuronal NO synthase (nNOS) inhibitor in both models led to a reversal of the molecular, synaptic, and behavioral ASD-associated phenotypes. Importantly, treating iPSC-derived cortical neurons from patients with SHANK3 mutation with the nNOS inhibitor showed similar therapeutic effects. Clinically, they found a significant increase in nitrosative stress biomarkers in the plasma of low-functioning ASD patients. Bioinformatics of the SNO-proteome revealed that the complement system is enriched in ASD. This novel work reveals, for the first time, that NO plays a significant role in ASD. Their important findings will open novel directions to examine NO in diverse mutations on the spectrum as well as in other neurodevelopmental disorders. Finally, it suggests a novel strategy for effectively treating ASD.

 


 

NO Donor Administration Induced ASD-Like Behavior in WT Mice and Enhanced the ASD Phenotype in Mutant Mice 

NO Inhibition Reversed Synaptophysin Expression and Reduced Nitrosative Stress in Primary Cortical Neurons Derived from the Mutant Mouse Model 

nNOS Inhibition Restores the Expression of Key Synaptic Proteins Using iPSC-Derived Cortical Neurons from Patients with SHANK3 Mutations

Elevation of Nitrosative Stress Biomarker and Reprogramming of the SNO-Proteome in the Blood Samples of ASD Children

 

Our study is designed to examine the effect of high levels of NO on the development of ASD. This work shows that NO plays a key role in ASD. Importantly, this was confirmed in cellular, animal models, human iPSC-derived cortical neurons, as well as in clinical samples. Since the molecular mechanisms underlying ASD pathogenesis remain largely unknown, we provided a new mechanism that shows that NO plays a key role in ASD pathology at the molecular, cellular, and behavioral levels. An increase of Ca2+ influx in ASD pathology, including in human and mouse models of Shank3 and Cntnap2(-/-), has already been reported. Ca2+ activates nNOS, which then leads to massive production of NOAberrant NO production induces oxidative and nitrosative stress, leading to increased 3-Ntyr production and aberrant protein SNO. Our data showed an increase in NO metabolites and 3-Ntyr production in both mouse models of ASD (Shank3Δ4-22, Cntnap2(-/-)). Increased 3-Ntyr was found in iPSC-derived cortical neurons from patients with SHANK3 mutations, SHANK3 knocked down in SHSY5Y cells, and in human ASD plasma samples. The elevated levels of 3-Ntyr in our study are consistent with previous postmortem examinations of ASD patients showing the accumulation of this molecule in the brain. 

Collectively, our results show for the first time that NO plays a key role in ASD development. We found that NO affects synaptogenesis as well as the glutamatergic and GABAergic systems in the cortex and the striatum, which converge into ASD-like behavioral deficits. This work suggests that NO is an important pathological factor in ASD. Examining NO in diverse mutations on the spectrum as well as other neurodevelopmental disorders and psychiatric diseases will open novel future research directions. Finally, this is a novel experimental study that establishes a direct link between NO and ASD, leading to the discovery of novel NO-related drug targets for the disorder and suggesting nNOS as a precise target for treatment.

 

The trigger for the excess NO production is put down to the increase of Ca2+ influx, which really is at the core of autism.  This was explained in the post about IP3R long ago. 

Is dysregulated IP3R calcium signaling a nexus where genes altered in ASD converge to exert their deleterious effect?

 

The simple answer appears to be YES.

 and in later posts:

https://www.epiphanyasd.com/search/label/IP3R

  

Conclusion

For autism a little less nNOS, please.

The researchers used the selective neuronal nitric oxide synthase inhibitor 7-nitroindazole.

Nitroindazole acts as a selective inhibitor for neuronal nitric oxide synthase, an enzyme in neuronal tissue, that converts arginine to citrulline and nitric oxide (NO).

7-Nitroindazole is under investigation as a possible protective agent against nerve damage caused by excitotoxicity or neurodegenerative diseases. It may act by reducing oxidative stress or by decreasing the amount of peroxynitrite formed in these tissues. These effects are related to the inhibition of type 1 nitric oxide synthase. However, anti-convulsive effect is derived from some other mechanisms. 

For older folks with higher blood pressure, a little more eNOS please; indeed, the explosive nitroglycerin is also used as a life-saving drug that induces eNOS production in someone about have a heart attack. The resulting NO widens blood vessels and so increases blood flow.


Methylene blue was mentioned in a recent comment in regard to nitric oxide (NO)

Methylene blue (MB) inhibits endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), guanylate cyclase, and cytokines such as tumor necrosis factor-α (TNF-α). MB restores vascular tone due to the selective blockade of both guanylate and iNOS.

MB should increase blood pressure.

Some people with autism respond well to MB. This likely is unrelated to its effect on NO and might well be due to its numerous anti-inflammatory effects (inhibiting NLRP3 inflammasome etc).