UA-45667900-1
Showing posts with label ACC. Show all posts
Showing posts with label ACC. Show all posts

Thursday, 15 August 2019

Wandering, Water, Sense of Danger and Accidents


We were recently at the seaside in Greece, where Monty was enjoying swimming in the sea. He is now a very competent swimmer and behaves in the water just like any other confident swimmer. Together with Mum he actually rescued a Russian swimmer in distress.  Monty does not get crazy ideas to swim to islands in the distance, or anything like that. Not so far, at least. 

Water is behind a shocking number of wanderings and deaths.

In the North American media, you can see that on a very regular basis children with autism and/or ID/MR (Intellectual Disability/Mental Retardation) wander off and get lost. Very often they are found in or beside water.

In Europe you hear much less frequently about children wandering. A high-profile case recently was an Irish teenage girl with MR/ID who disappeared while on holiday at a tiny jungle resort in Malaysia.  She left behind an open ground floor window and was found 10 days later beside a stream in a ravine a mile away. 

She had holoprosencephaly, which is an umbrella term for conditions relating to when the forebrain of the embryo fails to develop into two separate hemispheres, it includes Agenesis of the Corpus Callosum (ACC) when the part of the brain that is supposed to connect the two hemispheres fails to develop. Partial ACC and the exact opposite are features appearing in some severe autism.

People with MR/ID have no sense of danger and are usually enchanted by water. Wandering is far more likely than abduction.

Another case recently was an American teenager on a cruise arranged by his residential care home, it appears that he jumped over the deck railing at night to go for a swim in the ocean.

Even a bath tub can be dangerous, a young man with autism and epilepsy was left unattended in a bath at a UK care facility. He had a seizure and drowned.

I do think much more could be done to prevent wandering and water-related accidents. Firstly, people (parents) should be made more aware of who is at risk; anyone with a low IQ and unable to travel independently is at risk.

People with ID/MR often live in a world of cartoons, where all kinds of crazy things are possible, like jumping off a cruise ship and nobody ever gets hurt.  Going to a jungle retreat, like you are living in the Jungle Book cartoon, why wouldn’t you sneak downstairs in the night and enter your private jungle world?

Just because you have never been able to wander before does not mean you never will. 

The shortened life expectancy of people with severe autism is in large part down to preventable accidents, seizures and poor basic healthcare.

I do think that treating MR/ID would be much more socially acceptable than treating autism. Understanding the danger of crossing a road, or falling into a lake is more important than being able to tie your shoe laces.  If you can improve cognition with a pill, who could possibly object to that? 

It is no surprise that we have www.Treatable-ID.org but no www.Treatable-ASD.org 

In reality you will struggle to have treating ID taken seriously, although for many people it is possible.




Friday, 19 January 2018

Glass Syndrome / SATB2-associated syndrome – Osteoporosis and ERβ


The world’s longest glass bridge is in China.

Today’s post is about Glass Syndrome / SATB2-associated syndrome, it occurs when something goes wrong with a gene called SATB2; there are several variants because different mutations in this gene are possible.

Glass Syndrome / SATB2-associated syndrome is another of those single gene types of autism, so you can think of SATB2 as another autism gene.  As we will see in today’s post SATB2 is involved in much more than autism and is very relevant to osteoporosis and some types of cancer.

While autism caused by SATB2 is very rare, diseases in old age quite often involve the SATB2 gene being either over expressed or under expressed. As a result there is much more research on SATB2 than I expected.

The current research into Glass Syndrome / SATB2-associated syndrome is mainly collecting data on those affected, rather than investigating therapies. There are some links later in this post, for those who are interested.

The research into SATB2, unrelated to childhood developmental disorders, is much more science heavy and already contains some interesting findings.   

I have only made a shallow study, but it seems that you can reduce SATB2 expression with a drug called Phenytoin and potentially increase expression via an estrogen receptor beta agonist. We saw in earlier posts that an estrogen receptor beta agonist might well be helpful in broader autism.

As with other single gene types of autism, it will be important to look at all the downstream effects caused by a lack of SATB2, some of which will very likely overlap with what occurs in some idiopathic autism or with other single gene autisms.

In Johns Hopkins’ simplification of autism into either hyper-active pro growth signaling, or hypo-active, SATB2 fits into the latter. It is associated with small heads and a small corpus callosum; that is the part that joins the left side of the brain to right side.

I think it is fair to say that SATB2 is associated with partial agenesis of the corpus callosum (ACC), a subject that has been covered in earlier posts.

I have mentioned two therapies recently that seem to help in certain variants of  ACC. The reason SATB2 causes partial agenesis of the corpus callosum (ACC) is well understood.  SATB2 needs to be expressed in the neurons that extend axons across the corpus callosum, in effect you need to build a bridge across from one side of the brain to the other and all the connections across that bridge need to match up and not be jumbled up. In some people with SATB2 they have an apparently normal corpus callosum (the bridge) but it does not work properly (the connections do not function).

SATB2 is also associated with a cleft palette, this occurs because the roof of the mouth (another bridge) does not join correctly left to right. You end up with an unwanted opening into the nose.

Building bridges is never an easy business. The Chinese have found this with their recent glass bridges, as in this post’s photo above. It looks like SATB2 is the “bridging” protein for humans, if the SATB2 gene is mutated you do not make enough of the SATB2 protein. The less SATB2 expression the more consequences there will be.

The other extreme also exists, too much SATB2 expression. That will lead to too much growth which makes it another cancer gene. In cases of aggressive prostate cancer SATB2 is over-expressed. So a therapy to slow this cancer would be to reduce SATB2 expression. For Glass Syndrome we would want the opposite. 

There is SATB2 associated syndrome research, but it is still at the stage of collecting data on people who are affected and investigating what particular mutation is present.

The logical next stage is to see more precisely the role SATB2 plays in different parts of the brain. By seeing how SATB2 interacts with the world around it, it may be possible to correct for the lack of it.  For example there is an interaction with Ctip2, a transcription factor that is necessary and sufficient for the extension of subcortical projections by cortical neurons. This look very relevant to building bridges.

Confusingly, Ctip2 is also called B-cell lymphoma/leukemia 11B encoded by the BCL11B gene. 






The research relating your bones looks the most advanced and already suggests possible therapies to both increase and reduce SATB2 expression.



The above paper (the full version is not public)  is very detailed and shows how important SATB2 may be in bone diseases and therefore be of wide clinical relevance.  It also suggests that it could be treated by gene therapy.






Molecular Regulation of SATB2 by Cytokines and Growth Factors

It appears that the anti-epileptic drug (AED) Phenytoin reduces SATB2 expression, which is the opposite of what we want, but shows that modification is possible.

Osteoporosis,  SATB2, Estrogen and ERβ
There already is much in this blog about estrogen/estradiol and estrogen receptor beta. There are was a phase in this blog when there were many comments about disturbed calcium metabolism in family members.
It appears they may be connected via SATB2.
Older people lack estrogen, particularly females, and this is associated with osteoporosis.
Very recent research shows that there is an ERβ-SATB2 pathway (ERβ = estrogen receptor beta, which is activated by estrogen). So a reduction in estrogen during aging reduces signaling along the ERβ-SATB2 pathway (making less SATB2).
We know from earlier posts that people with autism tend to have a reduced number of ERβ receptors and also a lower level of estrogen/estradiol. This might explain some of the problems readers reported with bones in their family members.
This raises the question of what happens to SATB2 expression when you add a little extra estrogen/estradiol. The implication from the Chinese study highlighted later is that this may well be one way to make more SATB2 from the non-mutated copy that you have (you likely have one mutated copy and one clean copy of this gene). This is something that should be investigated.


How to treat Glass Syndrome/SATB2?
Ideally you would use gene therapy to treat Glass Syndrome/SATB2; this will in future decades very likely be possible.  In the meantime the more old-fashioned options must be relied upon.
We know that people with partial agenesis of the corpus callosum (ACC) face challenges, some of which match those faced  with Glass Syndrome/SATB2. We know certain types of ACC do respond to treatment, based on research, so it would seem highly likely that treatment for  Glass Syndrome/SATB2 should be possible.
Very likely some of the myriad of treatments researched for autism may be helpful. But which ones?
The treatment proposed by Knut Wittkowski for very early intervention in idiopathic autism to alter the trajectory from severe autism towards Asperger’s looks interesting and particularly because our reader Ling finds it helpful for her daughter with SATB2. Knut’s research identified Ponstan (mefenamic acid) as a target drug to minimize the cascade of damaging events that occurs as autism progresses in early childhood.
Here you would hope that some researcher would create a mouse model of Glass Syndrome/SATB2 and then see if Ponstan (mefenamic acid) has any effect, not to mention estradiol.


Websites with Information on Glass Syndrome/ SATB2 associated syndrome 






Some Research Relating to SATB2


Satb2 is a DNA-binding protein that regulates chromatin organization and gene expression. In the developing brain, Satb2 is expressed in cortical neurons that extend axons across the corpus callosum. To assess the role of Satb2 in neurons, we analyzed mice in which the Satb2 locus was disrupted by insertion of a LacZ gene. In mutant mice, β-galactosidase-labeled axons are absent from the corpus callosum and instead descend along the corticospinal tract. Satb2 mutant neurons acquire expression of Ctip2, a transcription factor that is necessary and sufficient for the extension of subcortical projections by cortical neurons. Conversely, ectopic expression of Satb2 in neural stem cells markedly decreases Ctip2 expression. Finally, we find that Satb2 binds directly to regulatory regions of Ctip2 and induces changes in chromatin structure. These data suggest that Satb2 functions as a repressor of Ctip2 and regulatory determinant of corticocortical connections in the developing cerebral cortex.


Striatal medium spiny neurons (MSN) are critically involved in motor control, and their degeneration is a principal component of Huntington's disease. We find that the transcription factor Ctip2 (also known as Bcl11b) is central to MSN differentiation and striatal development. Within the striatum, it is expressed by all MSN, although it is excluded from essentially all striatal interneurons. In the absence of Ctip2, MSN do not fully differentiate, as demonstrated by dramatically reduced expression of a large number of MSN markers, including DARPP-32, FOXP1, Chrm4, Reelin, MOR1 (μ-opioid receptor 1), glutamate receptor 1, and Plexin-D1. Furthermore, MSN fail to aggregate into patches, resulting in severely disrupted patch-matrix organization within the striatum. Finally, heterotopic cellular aggregates invade the Ctip2−/− striatum, suggesting a failure by MSN to repel these cells in the absence of Ctip2. This is associated with abnormal dopaminergic innervation of the mutant striatum and dramatic changes in gene expression, including dysregulation of molecules involved in cellular repulsion. Together, these data indicate that Ctip2 is a critical regulator of MSN differentiation, striatal patch development, and the establishment of the cellular architecture of the striatum.







Neuroimaging. Brain abnormalities, documented in half of affected individuals who underwent head MRI, include nonspecific findings such as enlarged ventricles (12%), agenesis of the corpus callosum (5%), and prominent perivascular spaces (5%). Of interest, abnormal myelination for age and/or non-progressive white matter abnormalities appear to be particularly common (26%) in those with pathogenic nonsense, frameshift, and missense variants [Zarate & Fish 2017, Zarate et al 2017a]. Note that these findings are not sufficiently distinct to specifically suggest the diagnosis of SAS.

Other neurologic manifestations

·         Hypotonia, particularly during infancy (42%)
·         Clinical seizures (14%)
·         EEG abnormalities without clinically recognizable seizures [Zarate et al 2017a]
·         Less common neurologic issues include gait abnormalities/ataxia (17%), hypertonicity and/or spasticity (4%), and hyperreflexia (3%).



Growth restriction. Pre- and postnatal growth restriction, sometimes with associated microcephaly, can be found in individuals with SAS, particularly in those with large deletions involving SATB2 and adjacent genes (71%).

This is likely to be the most relevant paper, even though the tittle might not suggest it:-


Decline of pluripotency in bone marrow stromal cells (BMSCs) associated with estrogen deficiency leads to a bone formation defect in osteoporosis. Special AT-rich sequence binding protein 2 (SATB2) is crucial for maintaining stemness and osteogenic differentiation of BMSCs. However, whether SATB2 is involved in estrogen-deficiency associated-osteoporosis is largely unknown. In this study, we found that estrogen mediated pluripotency and senescence of BMSCs, primarily through estrogen receptor beta (ERβ). BMSCs from the OVX rats displayed increased senescence and weaker SATB2 expression, stemness, and osteogenic differentiation, while estrogen could rescue these phenotypes. Inhibition of ERβ or ERα confirmed that SATB2 was associated with ERβ in estrogen-mediated pluripotency and senescence of BMSCs. Furthermore, estrogen mediated the upregulation of SATB2 through the induction of ERβ binding to estrogen response elements (ERE) located at -488 of the SATB2 gene. SATB2 overexpression alleviated senescence and enhanced stemness and osteogenic differentiation of OVX-BMSCs. SATB2-modified BMSCs transplantation could prevent trabecular bone loss in an ovariectomized rat model. Collectively, our study revealed the role of SATB2 in stemness, senescence and osteogenesis of OVX-BMSCs. Collectively, these results indicate that estrogen prevents osteoporosis by promoting stemness and osteogenesis and inhibiting senescence of BMSCs through an ERβ-SATB2 pathway.

Therefore, SATB2 is a novel anti-osteoporosis target gene.

3.2 Estrogen enhanced SATB2 levels, pluripotency and alleviated senescence of OVX-BMSCs.

Estrogen has been shown to promote bone formation and proliferation both in vivo and in vitro (Wang, J. et al., 2014; Du, Z. et al., 2015; Kim, R. Y. et al., 2015), so we asked whether estrogen affected SATB2 expression, stemness and osteogenic differentiation of BMSCs. We found that both Sham-BMSCs and OVX-BMSCs treated with 10-8M estrogen (Matsumoto, Y. et al., 2013) regained the colony forming capacity as compared to the control (Fig. 2A). Higher expression levels of SATB2, Nanog, Sox2 and Oct4, were observed in BMSCs treated with estrogen relative to the control group (Fig. 2B, C). These results were further confirmed by human BMSCs (Fig. 2D). The role of estrogen on anti-senescence was verified by the decreased SA-β-gal positive cells and alleviated expression of senescence markers (Fig. 2E, F). After osteogenic induction, the expression of osteogenic markers, Runx2 and OCN, significantly increased (Fig. 2G and H). Consistently, estrogen significantly enhanced the mineralized node formation (Fig. 2I). Interestingly, the expression of osteoclast-related activator, RANKL, and inhibitor, OPG, significantly changed in OVX-BMSCs treated with estrogen (Fig. 2J).

Together, these results suggest that estrogen rescued pluripotency and alleviated senescence of OVX-BMSCs accompanied by a higher expression of SATB2.



3.4 SATB2 is a confirmed target of ERβ.  
Estrogen is known to regulate gene expression by binding to ERs, which subsequently binds to EREs present in promoters (Klinge, C. M. 2001). Analysis of 2 kb upstream and 50bp downstream of SATB2, using Promo 3.0 software, showed the presence of three putative EREs that had (achieved through site-directed mutagenesis at the ERβ binding site in the SATB2 promoter). As anticipated, ERβ overexpression induced by estrogen increased luciferase activity in wild-type but not mutant promoter region A (Fig. 4C, D). 
 Further, to check dynamic recruitment of ERβ to the EREs following estrogen treatment, we used chromatin immunoprecipitation (CHIP). CHIP analysis was conducted in OVX-BMSCs with or without estrogen treatment using antibodies specific to ERβ or IgG control. This revealed that following estrogen treatment, various putative EREs facilitated dynamic recruitment of ERβ. Furthermore, the binding of ERβ was considerably more robust in region A than other regions (Fig. 4E). Thus, the induction of SATB2 by estrogen is mediated by the binding of ERβ to various EREs present in the SATB2 promoter.

Discussion


Although it is well-known that osteoporosis due to estrogen deficiency is associated with bone loss, the detailed mechanisms underlying this are not fully understood (Liao, L. et al., 2013; Villa, A. et al., 2015; Wang, J. et al., 2016). We recently found that the expression of SATB2 was associated with ERs, especially ERβ, after estrogen treatment of BMSCs (Fig. 3A). In this study, we successfully established an ovariectomized rat model of postmenopausal osteoporosis and showed that STAB2 was associated with estrogen-ERβ complex in OVX-BMSCs. Moreover, our data demonstrated that SATB2 was a downstream effector of ERβ. The induction of SATB2 by estrogen was mediated by binding of ERβ to various EREs present upstream of SATB2. Our study suggested the central role of SATB2 in the etiology of postmenopausal osteoporosis, suggesting it as a candidate target of osteoporosis prevention and treatment.



                                                                                                                                 


Conclusion
Our reader Ling is busy researching this syndrome and this is a good place to post comments with her findings, so others can find them later.







Tuesday, 5 September 2017

Autism MRI



Source: Brain MR Imaging Findings and Associated Outcomes in Carriers of the Reciprocal Copy Number Variation at 16p11.2


In the early days of this blog, one medical reader told me that in cases of autism an MRI scan of the brain should appear normal.
This also fits with the idea that once you have a biological diagnosis, you no longer have a case of “autism”. It is only Autism, when it is of unknown origin.  
People who have a single gene type of autism actually can have significant variations in brain structure that appear clearly on an MRI.  This was the subject of a recent study and the source of the MRI in this post.




Many people with autism have abnormalities at a specific site on the 16th chromosome known as 16p11.2. Deletion or duplication of a small piece of chromosome at this site is one of the most common genetic causes of autism spectrum disorder.
People with deletions tend to have brain overgrowth, developmental delays and a higher risk of obesity.
Those with duplications are born with smaller brains and tend to have lower body weight, but also developmental delays. 
For regular readers of this blog there are some interesting points to note.

Agenesis of the Corpus Callosum

The corpus callosum is a wide, flat bundle of fibers about 10 cm long that connects the left and right sides of the brain.  It facilitates communication between the two sides of the brain.
Agenesis of the corpus callosum (ACC) is a birth defect in which there is a complete or partial absence of the corpus callosum.
ACC leads to behaviors compatible with a diagnosis of autism or Asperger’s in about half of cases.
Symptoms of ACC vary greatly among individuals, as they do in all types of autism.  Seizures are common, some people have poor motor coordination, and some people are non-verbal.  My original post on the subject:-


Agenesis of the Corpus Callosum (ACC)                                                                                 
You may recall that in the film Rain Man, Dustin Hoffman’s character was inspired by a man with ACC called Kim Peak.  It is now thought that Peak had FG Syndrome and this is what caused his ACC. It appears that his brain adapted and made unusual connections leading to his remarkable memory.
The Corpus Callosum is clearly visible on an MRI.
In 16p11.2. deletion you end up with an overgrown (thick) corpus callosum, while in 16p11.2. duplication you end up with a thin corpus callosum, which equates to a partial Agenesis of the Corpus Callosum.                                
At least one reader of this blog has a case of partial Agenesis of the Corpus Callosum and as he told me, it is not autism it is ACC.


Chiari 1 “brain hernia”
Another point of interest on the above MRI has been highlighted as Cerebellar Ectopia. Now if they had called it a Chiari malformation, you might have linked it to an old post on this blog.


In people with brain overgrowth and/or a small skull, what happens when there is no space left for a growing brain? Well it appears that pressure builds up and you get a kind of hernia with the brain expanding downwards into the spine.
This is called a Chiari 1 malformation and it seems to be quite common in the types of autism associated with over active pro-growth signalling pathways.
Since 16p11.2 deletion is associated with too much growth (thick corpus callosum, brain overgrowth and obesity) we should not be surprised that they often present with Chiari 1 “brain hernia”, which is treatable and this should improve symptoms. 

Conclusion

An MRI can sometimes tell you a lot, when you know what to look for and clearly should be carried out on anyone diagnosed with disabling autism.
Undoubtedly there are other areas of the brain where important variances occur.
This would provide useful data to assign individuals with autism into subgroups and hence improve the chance of finding effective therapy.  What works for Peter may help Paul, but what works for Zach probably will not help Amber.






Monday, 21 November 2016

Agenesis of the Corpus Callosum


Today’s post is about another supposedly rare cause of autism called Agenesis of the Corpus Callosum (ACC).

As regular readers of this blog will have noted, extremely rare causes of autism, taken as a group are not so rare after all.  In fact it seems that autism is just a very large collection of somewhat rare biological conditions. 
Of the very few "Autism Dads" I have had a face to face conversation with, one has a child with ACC and another has a son with the even rarer Sotos syndrome. Sotos syndrome is characterized by gigantism, mild ID/MR and often autism. Mutations in the NSD1 gene cause Sotos syndrome

ACC is physical malformation of the brain that shows up clearly on MRI scans and potentially shows up on the mother’s regular ultrasound scans. 

The corpus callosum is a wide, flat bundle of fibers about 10 cm long that connects the left and right sides of the brain.  It facilitates communication between the two sides of the brain.
Agenesis of the corpus callosum (ACC) is a birth defect in which there is a complete or partial absence of the corpus callosum.

ACC leads to behaviors compatible with a diagnosis of autism or Asperger’s in about half of cases.

Symptoms of ACC  vary greatly among individuals, as they do in all types of autism.  Seizures are common, some people have poor motor coordination, and some people are non-verbal.

It is suggested by many that a diagnosis of ACC is not compatible with a diagnosis of autism; this just shows a lack of understanding.
Autism is just a description of behaviors, ACC is a biological diagnosis, like Fragile X syndrome or Down Syndrome.  So if a person has autistic behaviors caused by ACC, it is still autism, it is just autism with an explanation of its origin.

The most famous person with ACC was Kim Peek who was the inspiration for the character played by Dustin Hoffman in the well-known film Rain Man.

In addition to having the physical ACC malformation it has been suggested that the cause of ACC in his case was likely FG Syndrome.

Most mutations that cause FG syndrome can be found in the MED12 gene. However, mutations have also been found in FMR1, FLNA, UPF3B, CASK, MECP2, and ATRX genes. Mutations on these different genes lead to the different types of FG syndrome, all with similar characteristics.  Congenital heart defects are common and Peek died of a heart attack aged 58, outlived by his father.  


Agenesis of the Corpus Callosum and broader Autism

Undoubtedly there are people diagnosed with autism, who have undiagnosed ACC, since they never had an MRI scan.  Just like there are many people with autism who have an undiagnosed, but treatable, Chiari “brain hernia”.

It also appears that having a smaller corpus callosum, but falling short of what would be diagnosed as ACC by the MRI scan, is a feature of some people’s autism. You could consider it as partial ACC, like we had partial biotin/biotinidase deficiency.

A very recent paper from the 2016 Society for Neuroscience annual meeting suggested one reason why autism is more prevalent in males.  The study looked at infecting pregnant rats with group B streptococcus to activate the mothers immune system.  Inflammation was then triggered in the fetal side of the placenta, but only in male fetuses.
The males go on to develop brain and behavioral features reminiscent of autism.
Female fetuses were somehow protected and developed normally.  Hopefully Barons Cohen will read this and stop looking for undiagnosed females with autism. There are many good reasons why autism is less prevalent in females, and they are not just “better at hiding it”, as the so-called expert claims. 



What is interesting is that in the male pups with “autism” they had an unusually thin corpus callosum. It turns out that such minor malformations occur in broader human autism. 



The largest of the white matter tracts is known as the corpus callosum, which allows communication between the two hemispheres (halves) of the brain.
"The size of the corpus callosum was smaller in the group with autism, suggesting that inter-regional brain cabling is disrupted in autism," Dr. Just said.

In essence, the extent to which the two key brain areas (prefrontal and parietal) of the autistic participants worked in synchrony was correlated with the size of the corpus callosum. The smaller the corpus callosum, the less likely the two areas were to function in synchrony. In the normal participants, however, the size of the corpus callosum did not appear to be correlated with the ability of the two areas to work in synchrony.

"This finding provides strong evidence that autism is a disorder involving the biological connections and the coordination of processing between brain areas," Dr. Just said.




CONCLUSIONS:

These longitudinal results suggest atypical early childhood development of the corpus callosum microstructure in autism that transitions into sustained group differences in adolescence and adulthood. This pattern of results provides longitudinal evidence consistent with a growing number of published studies and hypotheses regarding abnormal brain connectivity across the life span in autism.




The study suggests that white matter abnormalities manifest early in autism, says Thomas Frazier, director of Center for Autism at the Cleveland Clinic in Ohio. “It also serves as a nice demonstration that brain abnormalities in autism will become clearest and most helpful for pointing to etiology when we look at them developmentally, longitudinally, rather than at a single age," he says.



The findings do not imply that corpus callosum abnormalities cause autism, cautions Ralph-Axel Müller, professor of psychology at San Diego State University, who was not involved with the work. Rather, any irregularities in the corpus callosum may stem from other abnormalities in the brain that have been associated with autism, Müller says.



Still, changes in the corpus callosum may help to explain why autism symptoms worsen in some individuals and improve in others, Travers says. "Is there some aspect of white matter micro-structure occurring early in the developmental pathology that locks in persistent autism across the lifespan? What are the mechanisms? Can they be unlocked?” she says. “These will be important questions for future research.”



  

Conclusion

It is estimated that at one in 4,000 individuals has a disorder of the corpus callosum. I suspect it is more, but you would need to routinely give MRI scans to people diagnosed with autism to find out.

It is clear that milder disorders of the corpus callosum may be a feature of many people’s autism and those changes over time in the corpus callosum may help to explain why autism symptoms worsen in some individuals and improve in others.