UA-45667900-1
Showing posts with label Biogaia. Show all posts
Showing posts with label Biogaia. Show all posts

Friday, 18 October 2024

The role of the microbiome in aggression. Gut microbe imbalances that predict autism and ADHD. Biogaia trial for Autism.

 


By December 2020 7.3% of the Swedish cohort born in 1997-9 had been diagnosed with a Neurodevelopmental Disorder (ND). This can be predicted by samples previously collected.

Today’s post is all about the microbiome and covers three different areas covered recently in the research. Eight years after I wrote a post about our informal trial of Biogaia probiotics for autism, we now have a published paper.

Aggression and self injurious behavior (SIB) affects at least half of those diagnosed with level 3 autism at some point in their lives. SIB can become the overriding concern for care givers.

Our first paper looks at the role of the microbiome in aggression.

Gut-brain axis appears to play a critical role in aggression

A series of experiments on mice has found that they become more aggressive when their gut microbiome is depleted. Additionally, transplanting gut microbiota from human infants exposed to antibiotics led to heightened aggression in mice compared to those receiving microbiome transplants from non-exposed infants. The research was published in Brain, Behavior, and Immunity.

In the past decade, scientists have discovered a complex communication pathway linking gut microbiota—the trillions of microorganisms living in the human gut—with the brain. This pathway is called the microbiota-gut-brain axis. It regulates various physiological functions, including digestion and immunity, but also affects mood and behavior. The gut microbiota produces neurotransmitters and other metabolites that can influence brain function through neural, immune, and endocrine pathways.

Recent studies have demonstrated that symptoms of various disorders, once considered primarily psychological or neurological, can be transferred to rodents by transplanting gut microbiota from humans with these disorders. For example, researchers have shown that transplanting gut microorganisms from people with Alzheimer’s disease into mice (whose gut microbiota had been depleted to enhance transplant effectiveness) resulted in cognitive impairments in the mice. Similarly, symptoms of anxiety have been induced in mice by transplanting gut microbiota from humans with social anxiety.

For the humanized mice, the researchers obtained fecal samples from infants who had been exposed to antibiotics shortly after birth, as well as from unexposed infants. These samples were transplanted into five-week-old germ-free mice. The researchers then waited for four weeks before testing the mice for aggression.

To measure aggression, the researchers employed the resident-intruder test, a well-established behavioral assay in which a male mouse (the “resident”) is introduced to another unfamiliar male mouse (the “intruder”) in its home cage. Aggression was quantified based on the latency to the first attack (how quickly the resident mouse attacked the intruder) and the total number of attacks during a 10-minute period.

The results showed that mice raised without gut bacteria (germ-free) and those treated with antibiotics exhibited higher levels of aggression compared to the control group. These mice attacked more frequently and were quicker to initiate aggressive behavior in the resident-intruder test.

The researchers found that humanized mice receiving fecal microbiota from antibiotic-exposed infants were significantly more aggressive than those receiving transplants from non-exposed infants. Even though the infants’ microbiomes had a month to recover after antibiotic exposure, the aggressive behavior was still evident in the recipient mice.

Biochemical analyses revealed that aggressive mice (both germ-free and antibiotic-treated) had distinct metabolite profiles compared to control mice. Specifically, levels of tryptophan—a precursor to serotonin, a neurotransmitter associated with mood and behavior—were elevated in these mice. Additionally, the levels of certain metabolites associated with microbial activity, such as indole-3-lactic acid, were reduced in the aggressive mice, suggesting that the absence of a healthy microbiome might alter key biochemical pathways involved in aggression.


Here is the link to the original paper:

A gut reaction? The role of the microbiome in aggression

Recent research has unveiled conflicting evidence regarding the link between aggression and the gut microbiome. Here, we compared behavior profiles of control, germ-free (GF), and antibiotic-treated mice, as well as re-colonized GF mice to understand the impact of the gut microbiome on aggression using the resident-intruder paradigm. Our findings revealed a link between gut microbiome depletion and higher aggression, accompanied by notable changes in urine metabolite profiles and brain gene expression. This study extends beyond classical murine models to humanized mice to reveal the clinical relevance of early-life antibiotic use on aggression. Fecal microbiome transplant from infants exposed to antibiotics in early life (and sampled one month later) into mice led to increased aggression compared to mice receiving transplants from unexposed infants. This study sheds light on the role of the gut microbiome in modulating aggression and highlights its potential avenues of action, offering insights for development of therapeutic strategies for aggression-related disorders

Note the ABX means antibiotics

We include a study of humanized mice using unique fecal samples of 1-month-old infants, collected nearly a month after early-life ABX administrationIn previous work (Uzan-Yulzari et al. 2021, Nat Comm), we have demonstrated that ABX in this critical period of life can have lasting effects of childhood growth. Here, we extend these findings using samples from the same cohort. Using fecal samples collected weeks after ABX administration also reduces the direct chemical effects of ABX on the host, highlighting the causative role of the dysbiotic host microbiome and associated metabolome in driving aggressive behavior. We demonstrate that infant microbiota, perturbed within the first 48 h of life, has a lasting signature through 1 month of age that, when transplanted into GF mice, results in increased aggression (3–5 weeks after transplant) when compared to effects of stools of infants not exposed to any early-life antibiotics. The findings are revolutionary as they show how ABX-altered microbiota during a critical development window can lead to persisting behavioral deficits.

 

Gut microbe imbalances could predict a child’s risk for autism, ADHD and speech disorders years before symptoms appear.

Study Identifies Gut Microbe Imbalances That Predict Autism And ADHD

We are researchers who study the role the microbiome plays in a variety of conditions, such as mental illness, autoimmunity, obesity, preterm birth and others. In our recently published research on Swedish children, we found that microbes and the metabolites they produce in the guts of infants – both found in poop and cord blood – could help screen for a child’s risk of neurodevelopmental conditions such as autism. And these differences can be detected as early as birth or within the first year of life. These markers were evident, on average, over a decade before the children were diagnosed. 

The imbalance in microbial composition – what microbiologists call dysbiosis – we observed suggests that incomplete recovery from repeated antibiotic use may greatly affect children during this vulnerable period. Similarly, we saw that repeated ear infections were linked to a twofold increased likelihood of developing autism.

Children who both repeatedly used antibiotics and had microbial imbalances were significantly more likely to develop autism. More specifically, children with an absence of Coprococcus comes, a bacterium linked to mental health and quality of life, and increased prevalence of Citrobacter, a bacterium known for antimicrobial resistance, along with repeated antibiotic use were two to four times more likely to develop a neurodevelopmental disorder.

Antibiotics are necessary for treating certain bacterial infections in children, and we emphasize that our findings do not suggest avoiding their use altogether. Parents should use antibiotics if they are prescribed and deemed necessary by their pediatrician. Rather, our study suggests that repeated antibiotic use during early childhood may signal underlying immune dysfunction or disrupted brain development, which can be influenced by the gut microbiome. In any case, it is important to consider whether children could benefit from treatments to restore their gut microbes after taking antibiotics, an area we are actively studying.

Another microbial imbalance in children who later were diagnosed with neurodevelopmental disorders was a decrease in Akkermansia muciniphila, a bacterium that reinforces the lining of the gut and is linked to neurotransmitters important to neurological health.

Even after we accounted for factors that could influence gut microbe composition, such as how the baby was delivered and breastfeeding, the relationship between imbalanced bacteria and future diagnosis persisted. And these imbalances preceded diagnosis of autism, ADHD or intellectual disability by 13 to 14 years on average, refuting the assumption that gut microbe imbalances arise from diet.

We found that lipids and bile acids were depleted in the cord blood of newborns with future autism. These compounds provide nutrients for beneficial bacteria, help maintain immune balance and influence neurotransmitter systems and signaling pathways in the brain.

The full paper is here: 


Infant microbes and metabolites point to childhood neurodevelopmental disorders 

Highlights

Infant microbes and metabolites differentiate controls and future NDs

Early-life otitis lowers Coprococcus and increases Citrobacter in future NDs

Preterm birth, infection, stress, parental smoking, and HLA DR4-DQ8 increase ND risk

Linolenic acid is lower and PFDA toxins higher in the cord serum of future ASD

Summary

This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immune-dysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.



ABIS = All Babies in Southeast Sweden cohort

NDs = Neurodevelopmental disorders

Young children later diagnosed with ASD or exhibiting significant autistic traits tend to experience more ear and upper respiratory symptoms. In ABIS, infants who had otitis in their first year were found to be more prone to acquiring NDs if they lacked detectable levels of Coprococcus or harbored Citrobacter. The absence of Coprococcus, despite comparable levels in controls irrespective of otitis, raises questions about microbial community recovery. This potential failure of the microbiome to recover following such events may serve as a mechanism connecting otitis media to ND risk. Moreover, antibiotic-resistant Citrobacter was more prevalent in these infants. The presence of strains related  to Salmonella and Citrobacter, labeled in this investigation as SREB, was significantly higher in infants who later developed comorbid ASD/ADHD (21%), compared to controls (3%). This disruption may have consequences on neurodevelopment during a critical period. Salmonella and Citrobacter have shown the ability to upregulate the Wingless (Wnt) signaling. The Wnt pathway is vital for immune dysregulation and brain development, and its disruption has been implicated in ASD pathogenesis. 

Two fatty acid differences were notable in the stool of future ASD versus controls: omega-7 monounsaturated palmitoleic acid, (9Z)-hexadec-9-enoic acid (below the level of detection in 87.0% of future ASD but present in 43.5% of controls), and palmitic acid (elevated in future ASD). Palmitoleic acid has been associated with a decreased risk of islet and primary insulin autoimmunity. Conversely, palmitic acid, a saturated fatty acid, has been linked to neuronal homeostasis interference. Its effects are partially protected by oleic acid, which although approaching significance, was lower in the cord serum of future ASD.

Few metabolites were higher in stool of infants with future ASD, but there are a few notable examples: α-d-glucose, pyruvate, and 3-isopropylmalate. Coprococcus inversely correlated with 3-isopropylmalate, suggesting gut-brain connections and a possible imbalance in branched-chain amino acid (BCAA) pathways given the role of 3-isopropylmalate dehydrogenase in leucine and isoleucine biosynthesis. An increase in dehydroascorbate suggests potential disruptions in vitamin C metabolism, crucial for neurotransmitter synthesis and antioxidant defense, while elevated pyruvate suggests disturbance of neurotransmitter synthesis or energy production early in life. Pimelic acid elevation, found in disorders of fatty acid oxidation, suggests disruption of mitochondrial pathways for fatty acid oxidation.

Akkermansia and Coprococcus, absent or reduced in infants with future NDs, positively correlated with signals in stool representing neurotransmitter precursors and essential vitamins in stool. Specifically, Akkermansia correlated with tyrosine and tryptophan (i.e., catecholamine and serotonin precursors, respectively) and Coprococcus with riboflavin. Disruption of BCAA metabolism in ASD has been documented, involving coding variants in large amino acid transporters (LATs) and reduced utilization of trypotphan and large aromatic amino acids along with increased glutamate and decreases in tyrosine, isoleucine, phenylalanine, and tryptophan in children with ASD. Oxidative stress, a diminished capacity for efficient energy transport, and deficiencies in vitamins (like vitamin B2) essential for neurotransmitter synthesis and nerve cell maintenance have been implicated. Riboflavin as an antioxidant reduces oxidative stress and inflammation, demonstrating neuroprotective benefits in neurological disorders, possibly through maintenance of vitamin B6, which is necessary for glutamate conversion to glutamine and 5-hydroxytryptophan to serotonin.

Together, these findings support a hypothesis of early-life origins of NDs, mediated by gut microbiota. This provides a foundation for research and for developing early interventions for NDs.

 

Today’s final paper was highlighted recently in a comment on a post I wrote eight years ago, when we were trialing Biogaia probiotics. This original interest was prompted by a reader sharing her successful experiences of treating her son with severe autism. Perhaps she left the recent comment?

The two bacteria involved are both types of L. reuteri.

L. reuteri 6475 is sold as Biogaia Osfortis

L. reuteri 17938 is sold Biogaia Protectis

The combination of L. reuteri 17938 and L. reuteri 6475 is sold as Biogaia Gastrus.

My old post from 2016:-

Epiphany: Biogaia Trial for Inflammatory Autism Subtypes



The recently published trial:

Precision microbial intervention improves social behavior but not autism severity: A pilot double-blind randomized placebo-controlled trial -

Highlights

L. reuteri (6475 + 17938) improves social functioning in children with autism

L. reuteri does not improve overall autism severity or repetitive behaviors

L. reuteri does not significantly alter microbiome composition or immune profile

  Only the 6475 strain reverses the social deficits in a mouse model for autism



we performed a double-blind, randomized, placebo-controlled, parallel-design pilot trial in children with ASD. Importantly, we found that L. reuteri, compared with placebo, significantly improved social functioning, both in terms of reducing social deficits, as measured by the social responsiveness scale (SRS31,32), and increasing adaptive social functioning, as measured by the social adaptive composite score of the Adaptive Behavior Assessment System, Second Edition (ABAS-233). L. reuteri did not improve overall autism severity, restricted and repetitive behaviors, and co-occurring psychiatric and behavioral problems, nor did it significantly modulate the microbiome or immune response. Thus, this safe microbial manipulation has the potential for improving social deficits associated with ASD in children.

I had to amend my old post with a warning long ago.

UPDATE: A significant minority of parents report negative reaction to Bio Gaia, this seems to relate to histamine; but more than 50% report very positive effects without any side effects; so best to try a very small dose initially to see if it is not well tolerated. 

Histamine Reaction to BioGaia gastrus

Conclusion

The gut microbiota does indeed play a key role in how your brain functions, but the gut-brain axis works in both directions. What goes on in your brain can affect your gut and not just the other way around. It is called bidirectional signaling.

Antibiotics taken during pregnancy, or during early childhood, will have unintended consequences. Often there is no choice, like for those readers whose baby experienced sepsis at birth (bacterial blood stream infection); you have to give antibiotics to avoid death.

In today’s second paper we see that the researchers are thinking about therapeutical implications. Perhaps the newborn’s gut flora should be repopulated during the weeks after the antibiotic treatment?

I receive many questions about how to treat self injurious behavior that does not respond to anything the doctor has prescribed. Rifaximin, an antibiotic used to treat irritable bowel syndrome with diarrhea, is one therapy that does help some types of SIB (and SIBO, small intestinal bacterial overgrowth, of course). This probably would not surprise the authors of today’s first paper.

Biogaia Gastrus (L. reuteri 6475 + 17938) from today’s third paper worked wonders for the SIB of one reader’s child.

Not surprisingly fecal microbiota transplantation (FMT) can improve SIB in some people.

The Swedish data shows interesting insights such as that lipids and bile acids were depleted in the cord blood of newborns with future autism. The researchers think they can predict the diagnosis of autism or ADHD. The question is and then what? Even when there is a diagnosis of autism, not much changes for most children.





Tuesday, 15 December 2020

Fine tuning Social Behavior in Autism with an existing pediatric drug, Desmopressin?

 


There are two closely related hormones, vasopressin and oxytocin, that have been extensively researched in autism. 

With oxytocin you can modify social-bonding behavior. You can increase oxytocin in the brain either via a nasal spray containing oxytocin, or you can add a specific bacterium to your gut that triggers a signal to the brain to produce more of its own oxytocin.  The latter is my preferred method, because you can produce a mild long-lasting effect throughout the day.

Oxytocin has a very short life and it does not cross the blood brain barrier.

There is even a new study in the works that will compare these two methods of treating autism.

 

Probiotics and oxytocin nasal spray as neuro-social-behavioral interventions for patients with autism spectrum disorders: a pilot randomized controlled trial protocol

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication. Oxytocin (OXT), as a neuropeptide, plays a role in emotional and social behaviors. Lactobacillus reuteri (L. reuteri) supplementation led to an OXT-dependent behavioral improvement in ASD mouse models. Despite some promising results from animal studies, little is known about the efficacy of supplementation with L. reuteri, alone or with exogenous OXT therapy, on social-behavioral functions in ASD patients. This paper presents a protocol for a pilot randomized controlled trial to evaluate the feasibility of conducting a full trial comparing oral supplementation of L. reuteri probiotics and intranasal OXT spray to placebo on the effect of social and behavioral functions in ASD patients. The study will also capture preliminary estimates of the efficacy of the proposed interventions in ASD patients.

Methods

This pilot trial is a two-staged, randomized, double-blind, placebo-controlled, parallel-group study. Throughout the study (0–24 weeks), 60 patients with ASD will be randomly assigned to receive either oral L. reuteri probiotics or placebo. In the second study stage (13–24 weeks), all participants will receive intranasal OXT spray. As primary outcomes, serum OXT levels will be assayed and social behaviors will be assessed via the Autism Behavior Checklist and the Social Responsiveness Scale which are validated questionnaires, an objective emotional facial matching test, and a new video-based eye-tracking test. Secondary outcomes include the GI-severity-index and Bristol Stool Chart to assess GI function and gut microbiome/short-chain fatty acids. All the outcomes will be assessed at baseline and weeks 12 and 24.

Discussion

This pilot study will provide important information on the feasibility of recruitment, blinding and concealment, treatment administration, tolerability and adherence, specimen collection, outcome assessment, potential adverse effects, and the preliminary efficacy on both primary and secondary outcomes. If successful, this pilot study will inform a larger randomized controlled trial fully powered to examine the efficacies of oral L. reuteri probiotics and/or intranasal OXT spray on social-behavioral improvement in ASD patients. 

My conclusion was to add two drops of L.Reuteri DSM 17938 (Biogaia Protectis) into the liquid part of my son's Polypill therapy. That way there are no extra pills to swallow and in theory the bottle should last 50 days, so I am not forever looking to buy more.  If you want a bigger effect, just add more drops.  The producer suggests a daily dose of 5 drops for babies, to promote GI health - the original intended purpose.

When it comes to Vasopressin it looks like you cannot avoid a nasal inhaler, unless you want to try transcutaneous electrical acupoint stimulation (TEAS).  There is a debate as to whether Vasopressin and its analogs (man-made modified versions) can cross the blood brain barrier and to what extent. 

There are 4 previous posts that looked at Vasopressin. 

https://epiphanyasd.blogspot.com/search/label/Vasopressin 

The Vasopressin showing good results in the trials at Stanford is the injectable pharmaceutical version of the hormone made into a nasal spray.  This kind of spray could be made easily at a compounding pharmacy.

It turns out that a synthetic analog of vasopressin, called desmopressin, has been widely used for over 40 years to treat nocturnal enuresis (night-time bed-wetting) among other more serious conditions.

 

Desmopressin in Autism 

Nocturnal enuresis is common in individuals with but to our knowledge, there are no reports that desmopressin enhances social functioning in ASD (or in any other clinical population). This may be because desmopressin is typically administered at bedtime (so prosocial effects would be less evident) and orally (oral desmopressin does not cross the blood-brain barrier). The most likely explanation, however, is that desmopressin acts selectively on AVPR2, rather than on AVPR1A”

 

From:

A randomized placebo-controlled pilot trial shows that intranasal vasopressin improves social deficits in children with autism

 

Desmopressin N=1 example 

I was recently contacted by the father of a young boy with autism who has been prescribed Desmopressin nasal spray by his neurologist.

The father noted major positive behavioral changes from the first dose.

This is of course great news.

Desmopressin is a widely available drug, seen as safe, and that is why it is prescribed to children.

In the US the nasal spray version is no longer widely used for children and they use the oral version.

In some countries it is used for people with MS (Multiple Sclerosis) with nocturnal enuresis.

 

Desmopressin Shortage

Before readers get too excited, Ferring Pharmaceuticals, the big producer of Desmopressin nasal sprays did voluntarily withdraw its brands (Minirin, DDAVP Nasal Spray, Desmopressin Acetate Nasal Spray) from the market in August 2020 due to a quality problem. 


https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/ferring-us-issues-voluntary-nationwide-recall-ddavpr-nasal-spray-10-mcg01ml-desmopressin-acetate

  

There is now a shortage and so what was an easy to obtain drug, may be more difficult to get.  There is a Pfizer version called Presinex.  

From the above paper on vasopressin for autism:-

Vasopressin benefits 

“In conclusion, the present pilot study determined that 4-week intranasal AVP treatment compared to placebo enhanced social communication abilities, diminished anxiety symptoms, and reduced repetitive behaviors in children with ASD. On nearly all behavioral measures, participants with the highest pre-treatment blood AVP concentrations benefitted the most from AVP treatment, suggesting that pre-treatment blood AVP concentrations may be useful for setting dosing guidelines for this medication. Last, intranasal AVP treatment was well tolerated with minimal side effects in this pediatric study population. These preliminary findings suggest that intranasal AVP treatment has potential to enhance social abilities in an ASD patient population characterized by currently intractable social impairments” 

Transcutaneous electrical acupoint stimulation (TEAS) to raise vasopressin 

“there is evidence that nonpharmacological interventions may facilitate endogenous AVP release, for example, electroacupuncture stimulation increases brain AVP concentrations in rats. Transcutaneous electrical acupoint stimulation (TEAS) therapy improves social functioning and anxiety symptoms in children with ASD, particularly in those with the largest post-treatment increase in blood AVP concentrations. The authors of this prior report theorized that increased AVP signaling may be the mechanism by which the prosocial and anxiolytic benefits of TEAS treatment were achieved” 

 

Vasopressin with Bumetanide  - take great care

A while back, one reader did ask me about taking intranasal Vasopressin with Bumetanide.  His doctor in California thought this might not be wise since the two drugs have opposing effects.

·        Bumetanide (a diuretic) makes you pee more.

·        Vasopressin (the anti-diuretic hormone) makes you pee less.

The real problem is the risk of low sodium, hyponatremia.  This is always a risk with vasopressin and the risk might well increase if you took Bumetanide.  The risk is going to be dose dependent.

If you take Vasopressin and then drink large amounts of water this will disturb the volume of fluids in your body and in particular it will lower the level of sodium.  This may lead to seizures and ultimately worse.

Bumetanide does disturb the level of electrolytes, but nearly all the change usually occurs in Potassium, this is why you need to add back potassium via diet and add a supplement.  Sodium is not normally a problem, but always check all electrolytes when taking a blood draw.

If someone adds vasopressin to their existing bumetanide therapy, the doctor should definitely monitor the level of sodium.

In most people’s diet, sodium is one thing you are likely to have too much of and it is very easy to add a bit more sodium if the blood test suggests it is necessary.  In extreme cases of low sodium you need to use a special re-hydration drink, or an intravenous saline solution.  Monty has a relative who keeps going to hospital for the latter.

The diuretic action of Bumetanide is a side effect of the "autism effect" and so if you can reduce the diuresis of bumetanide that would be good thing.  Researchers are trying to find a better-bumetanide and their goal is to have no diuresis.

If combining vasopressin with Bumetanide is accompanied by both reduced diuresis and a matching reduction in fluid intake, this might actually work well.  Clearly, extra care needs to be taken and what might be perfectly safe in one person may not be safe in another person.

  

Conclusion

I do have to give a big thank-you to our reader who shared his experience with Desmopressin and to the neurologist for suggesting it.

Desmopressin looks like one of those autism therapies that needs only a very short trial to determine whether it is beneficial.  This is a big advantage.

You would hope the Stanford vasopressin researchers make a short trial of Desmopressin, just to compare the effect.  They probably will not.

All you have to decide is whether it is going to be the left nostril, or the right nostril.  With intranasal insulin there was a problem with irritation inside the nose, so alternating left and right sides might be best.  You hold your breath and then squirt the spray; the objective is not to breath the spray into your lungs.  An easy mistake to make.

Note that I am referring to the 10 mcg/0.1mL Desmopressin nasal spray.  The one used to treat kids that wet their bed at night.

There is also a much more potent 1.5 mg/mL version, called Stimate in the US.  This is used to treat von Willebrand’s Disease (Type I) and hemophilia/haemophilia.  You do not want that version.  This version is 15 times more potent than the anti bed-wetting variant. 

I have been suggesting to Aspies living in the US that they give Vasopressin a trial to counter the social deficits that some find troubling.  I think they are able to obtain this via a compounding pharmacy, with a helpful doctor’s prescription.

I think outside the US your doctor will think you are mad if you ask for a specially compounded vasopressin nasal spray, or indeed a compounded  oxytocin spray.

For people unable to get the intranasal vasopressin prescribed/compounded, Desmopressin is on option to discuss with your doctor. Maybe time to develop a bed wetting problem?

The Aspies in the Netherlands have the legal option of a tiny non-hallucinogenic dose of Psilocybin once a month, which seems an effective way to target Serotonin 5-HT2A receptor-mediated pathways and so improve social behavior. What caught my attention was that the effect of this tiny dose lasts a month and it can also be used to treat severe, otherwise untreatable, cluster headaches.

Psilocybin is the fancy name for magic mushrooms.

Psilocybin is also legal in Brazil and not surprisingly in Jamaica.  It looks like the US is moving in the same direction - medicinal magic mushrooms!


FDA grants Breakthrough Therapy Designation to Usona Institute's psilocybin program for major depressive disorder


The “medical” dose of Psilocybin is a tiny fraction of the “recreational” dose and is only taken when the effect of previous dose fades to zero.  It is not a crazy idea at all, just not currently a legal therapy in most countries.  More than half a century ago Lovaas was researching something very similar at UCLA, but using LSD.


All told, there are several potential ways to fine-tune social behavior in autism. Sulforaphane is yet another option.



 

Thursday, 23 July 2020

How to increase Oxytocin (OT) effects in the autistic brain? OT nasal spray, L. reuteri DSM 17938, Magnesium, Estradiol, Nicotinamide riboside …



 Struggle to make friends? Consider Oxytocin



Today’s post was going to be about FMT super-donors, but instead we have a post about new insights into using oxytocin to treat autism.  From personal experience I can say that you really can target oxytocin receptors to affect mood/behavior; I have no personal experience of FMT (fecal microbiota transplants), but thousands of people use it for many conditions.  The FMT post will be next.

Oxytocin and vasopressin are two hormones, made in the hypothalamus, that are established targets for autism treatment. They are released into the bloodstream where they carry out their best-known functions, but they are also released from the hypothalamus directly into the brain where these hormones have entirely different functions.

Both oxytocin and vasopressin can be given as nasal sprays to enter the central nervous system (CNS) rather than just the blood stream.  This means you get the brain effects of the hormone, also known as the “central effects”.

As was discussed previously in this blog and is highlighted more recently in the article below, you can use certain bacteria in the gut to signal to the hypothalamus to produce more oxytocin.  This is really clever and it works in humans, not just research animals.  It also has the advantage of producing a more continuous effect than is found using the intranasal method to deliver oxytocin. 

When you sever the vagus nerve, the bacteria in the gut continues to produce the required chemicals, but the signal to the brain has been lost. The hypothalamus no longer produces increased oxytocin and so the behavioral/mood effect is lost. This has been proven in the research.

Gut microbes may treat social difficulties in autism mice


In science speak, “the results suggest that a peptide or metabolite produced by bacteria may modulate host oxytocin secretion for potential public or personalized health goals”.  It also appears that oxytocin improves wound healing. So perhaps old people with leg ulcers, which never seem to get better, might benefit from a daily dose of L. reuteri DSM 17938, it also might make them feel better due to those central effects.


Oxytocin in the brain acts via oxytocin receptors

As we learned years ago in this blog, you can increase the effect (turn up the volume) of receptors using a PAM (positive allosteric modulator).  Interestingly, magnesium is a PAM of the oxytocin receptor (OTR).  Many people with autism are supplementing magnesium, perhaps those using intranasal oxytocin should join them. 

A very recent paper has investigated in detail how oxytocin receptors function.


The peptide hormone oxytocin modulates socioemotional behavior and sexual reproduction via the centrally expressed oxytocin receptor (OTR) across several species. Here, we report the crystal structure of human OTR in complex with retosiban, a nonpeptidic antagonist developed as an oral drug for the prevention of preterm labor. Our structure reveals insights into the detailed interactions between the G protein–coupled receptor (GPCR) and an OTR-selective antagonist. The observation of an extrahelical cholesterol molecule, binding in an unexpected location between helices IV and V, provides a structural rationale for its allosteric effect and critical influence on OTR function. Furthermore, our structure in combination with experimental data allows the identification of a conserved neurohypophyseal receptor-specific coordination site for Mg2+ that acts as potent, positive allosteric modulator for agonist binding. Together, these results further our molecular understanding of the oxytocin/vasopressin receptor family and will facilitate structure-guided development of new therapeutics. 

Magnesium and mood disorders: systematic review and meta-analysis



Another consequence of ERβ under-expression in autism

Also interesting to those following autism research, is the role of ERβ (estrogen receptor beta).  It is well known that in the brains of those with autism, there is a lack of ERβ.  A lack of ERβ is likely to lead to lower oxytocin in the brain and CSF (spinal fluid).  In many types of autism, we know that the level of oxytocin in CSF is reduced.

If you activate ERβ you both increase expression of oxytocin receptor (OTR) and also increase the level of oxytocin measured in the CSF.  You can activate ERβ with estrogens, like estradiol or even phytoestrogens like soy.  The ideal therapy to use would be DHED.


The cheap diuretic spironolactone may very well indirectly increase the level of oxytocin in CSF.

Oxytocin and Estrogen Receptor β in the Brain: An Overview

Oxytocin (OT) is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release OT into the bloodstream to promote labor and lactation; however, OT neurons also project to other brain areas where it plays a role in numerous brain functions. OT binds to the widely expressed OT receptor (OTR), and, in doing so, it regulates homeostatic processes, social recognition, and fear conditioning. In addition to these functions, OT decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter OTR expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase OT peptide transcription, suggesting a role for OT in this estrogen receptor β-mediated anxiolytic effect. Further research is needed to identify modulators of OT signaling and the pathways utilized and to elucidate molecular mechanisms controlling OT expression to allow better therapeutic manipulations of this system in patient populations.






NAD and Nicotinamide Riboside to boost Oxytocin

Today we see that recent research from Japan shows that in those people with autism who have reduced NAD, they may well be able to improve behavior/mood by increasing the level of their oxytocin using Nicotinamide Riboside (NR).

Nicotinamide riboside (NR) is a special form of vitamin B3, sold as an expensive supplement.  The FDA say it is safe for use in humans.


Nicotinamide riboside supplementation corrects deficits in oxytocin, sociability and anxiety of CD157 mutants in a mouse model of autism spectrum disorder


Oxytocin (OT) is a critical molecule for social recognition and memory that mediates social and emotional behaviours. In addition, OT acts as an anxiolytic factor and is released during stress. Based on the activity of CD38 as an enzyme that produces the calcium-mobilizing second messenger cyclic ADP-ribose (cADPR), CD157, a sister protein of CD38, has been considered a candidate mediator for the production and release of OT and its social engagement and anti-anxiety functions. However, the limited expression of CD157 in the adult mouse brain undermined confidence that CD157 is an authentic and/or actionable molecular participant in OT-dependent social behaviour. Here, we show that CD157 knockout mice have low levels of circulating OT in cerebrospinal fluid, which can be corrected by the oral administration of nicotinamide riboside, a recently discovered vitamin precursor of nicotinamide adenine dinucleotide (NAD). NAD is the substrate for the CD157- and CD38-dependent production of cADPR. Nicotinamide riboside corrects social deficits and fearful and anxiety-like behaviours in CD157 knockout males. These results suggest that elevating NAD levels with nicotinamide riboside may allow animals with cADPR- and OT-forming deficits to overcome these deficits and function more normally.

NR elevates brain NAD+ and cerebrospinal OT

Social preference deficit and anxiety of CD157KO males are best corrected at a relatively low dose of NR

The results demonstrated that the daily oral administration of NR rescued the social behavioural impairments observed in male CD157KO mice. NR had essentially no effects on social behaviour in wild-type male mice. The beneficial effects of NR appear to depend on restoration of CSF OT levels because the NR-induced OT elevation was only detected in CD157KO mice, which have a CSF OT deficit.


In the course of identifying a nutritional intervention for CD157KO mice, we reproduced the anxiety-like and social-avoidance-like deficits reported previously. Reproducibly lower levels of CSF OT in male CD157KO mice make these mice an attractive model of autism, anxiety disorder, or social avoidance in neurodegenerative diseases. Significantly, this model responds to both OT and NR as a treatment.
The challenge of polygenic diseases of incomplete penetrance is that they are difficult to understand mechanistically. Multiple genetic and environmental (biochemical) factors may converge to dysregulate pathways that are altered in common conditions such as ASD. We note that one potentially hopeful point when studying polygenetic diseases is that brain systems are redundant, and thus, it may be possible to increase normal functions that are only partially encoded by genetically damaged circuitry.
NAD+ is consumed by CD38 in formation of cyclic ADP-ribose. It then participates in OT release in the hypothalamus. In our study, ADP-ribosyl cyclase activity was maintained at a similar range as that in wild-type animals (data not shown). A recent study suggested that NR supplementation did not change CD38 expression. However, in vitro studies have shown that NAD+ applied to the mouse hypothalamus leads to OT release. It is reasonable to assume that an elevation in NAD+ levels by NR in the hypothalamus is responsible for repair of the OT release.

Future work will probe CD38 dependence and the cell-type dependence of the beneficial effects of NR on CD157KO behaviour, the potential benefits of NR in other ASD models, and the potential of NR to become a safe nutritional intervention, in addition to OT, for at least some types of ASD in human populations.



NAD+ is reduced in older people

There is a lot of research into combating the effects of aging.  It is agreed that the older you get, the less NAD+ you have and so research has looked at numerous ways to raise it.

The CD157KO mice model of autism does feature reduced NAD+, but nobody knows how common reduced NAD+ is in autism.

If you have low levels of NAD+ there will be negative consequences.

I think you can consider NAD+ depletion in a similar way to oxidative stress, both are inevitable and damaging features of aging.

Most healthy younger people are likely wasting their time and money worrying about oxidative stress and NAD+.  These are the people with “detox” diets and juices.

However, most old people and some young people with autism really stand to benefit from correcting oxidative stress and any reduced NAD+.
  

Therapeutic potential of NAD-boosting molecules: the in vivo evidence





Hallmarks of NAD homeostasis
NAD+ is not merely a redox co-factor, it is also a key signaling molecule that controls cell function and survival in response to environmental changes such as nutrient intake and cellular damage. Fluctuations in NAD impact mitochondrial function and metabolism, redox reactions, circadian rhythm, immune response and inflammation, DNA repair, cell division, protein-protein signaling, chromatin and epigenetics.
There are many ways to boost NAD+.

NAD+ Precursors              
Niacin/ nicotinic acid (NA), Nicotinamide riboside (NR) Nicotinamide (NAM) etc.

CD38 Inhibitors                 
Flavonoids (Quercetin, Luteolin, Apigenin, fisetin, rutin and naringin)             
Luteolinidin.  Kuromanin/ Chrysanthemin, an anthocyanin (food pigment)    

PARP Inhibitors    
BGB-290, Olaparib, Rucaparib, Veliparib, CEP-9722, E7016, Talazoparib, Iniparib, Niraparib, PJ34, DPQ, 3-aminobenzamide
                       
SARM Inhibitors
XAV939                    

NAMPT Activators
P7C3 



Conclusion

Some readers of this blog do give intranasal oxytocin as a therapy.  There have been numerous studies on children with autism, some discussed in earlier posts.  Oxytocin needs to be kept chilled, not to lose its potency.

Eleven previous posts in this blog refer to Oxytocin.


As to whether stimulating oxytocin receptors is going to be worthwhile in your case of autism, you will just have to try it and see.
I found that the Biogaia Protectis probiotic (L. reuteri DSM 17938) had very clear effects, which were very much hallmark effects of oxytocin.  This is easy and inexpensive to try.
Some readers of this blog do use Nicotinamide Riboside (NR), which we saw today can increase oxytocin by increasing NAD+.
There are very many reasons why you do not want to be lacking in NAD+, other than oxytocin, but if you already have plenty NAD+ you will unlikely see a benefit from yet more.
Magnesium is a very common autism supplement; it is often given with vitamin B6; both can be used to treat stress.

Superiority of magnesium and vitamin B6 over magnesium alone on severe stress in healthy adults with low magnesemia: A randomized, single-blind clinical trial