UA-45667900-1
Showing posts with label Calcium Folinate. Show all posts
Showing posts with label Calcium Folinate. Show all posts

Monday, 20 January 2025

A hidden disability? - Automatic identification of autistic children based on appearance reaches 94% accuracy. Spectrum Needs assessed in a small trial. Bullying in ASD. TCF20 and GABAa receptors. Special educational needs – not so special any more.

 


Today’s post is a summary of a small part of the recent autism research. I am constantly amazed how much autism related research is churned out every day. To anyone who says more autism research is needed, just take a look at how much there already is !!  

 

Facial recognition of Autism?

Those working every day with special needs children have long known that you can pretty quickly spot a child with autism, without any lengthy diagnostic procedure.

Some advocates like to see autism as a hidden disability and believe you cannot “look autistic.” They had better not read this post.

I did write about facial recognition of single gene autisms and rare diseases where a commercialized product (Face2Gene) can now identify 200 conditions with 91% accuracy. This is from a single photo of the face. 

Now Chinese researchers have produce software that can predict autism in pre-schoolers with 94% accuracy based on automated analysis of a video.


Risk assessment and automatic identification of autistic children based on appearance

The diagnosis of Autism Spectrum Disorder (ASD) is mainly based on some diagnostic scales and evaluations by professional doctors, which may have limitations such as subjectivity, time, and cost. This research introduces a novel assessment and auto-identification approach for autistic children based on the appearance of children, which is a relatively objective, fast, and cost-effective approach. Initially, a custom social interaction scenario was developed, followed by a facial data set (ACFD) that contained 187 children, including 92 ASD and 95 children typically developing (TD). Using computer vision techniques, some appearance features of children including facial appearing time, eye concentration analysis, response time to name calls, and emotional expression ability were extracted. Subsequently, these features were combined and machine learning methods were used for the classification of children. Notably, the Bayes classifier achieved a remarkable accuracy of 94.1%. The experimental results show that the extracted visual appearance features can reflect the typical symptoms of children, and the automatic recognition method can provide an auxiliary diagnosis or data support for doctors.


The ASD group were all pre-school children, aged between 20 and 60 months, with an average age of 33.4 months for males and 31.5 months for females.

Like it or not, it seems that autistic toddlers do look different and so it is not a hidden disability. Nobody should be waiting years for a diagnosis.


Bullying

Most autism diagnosed today is mild, level 1 autism. Some of this group really do struggle and can genuinely benefit from pharmacologic therapies.

Bullying is one very common issue that is faced and does not need drug therapy, it needs a different kind of intervention.

A preliminary analysis of teaching children with autism spectrum disorder self-protection skills for bullying situations

Children diagnosed with autism spectrum disorder are at high risk of being bullied, but research on teaching children with autism self-protection skills for bullying situations is scant. We taught five children self-protection skills for two types of bullying (threats and unkind remarks) and consecutive bullying occurrences. We first evaluated behavioral skills training and a textual prompt to teach children to report threats of physical or material harm, provide a disapproving statement after a first unkind remark, and occupy themselves with an activity away from a bully after a second unkind remark. Additional tactics were necessary to aid in the discrimination of bullying situations for two children. There were increases in the self-protection skills with all children. Results further support that an active-learning approach is efficacious in teaching responses to bullying in simulated situations. Considerations for teaching these skills while maintaining trust and rapport with children and caregivers are discussed.

Having a sibling in the same school can be an effective defence against bullying. It might be an older brother, as was the case for Monty, but a younger sister can also be very effective. One episode, of many, I witnessed at school was a young Swedish girl intervening on behalf of her older Aspie-like brother. It really shocked the older boys and certainty impressed me.

I think most bullying affects those with level 1 autism. Those with severe autism would tend to have a 1:1 assistant and if he/she is doing their job there should not be the possibility bullying. I am told that out in the real world kids with level 3 autism do get bullied, which means the system has failed.

From the school’s perspective there is also the opposite issue of the pupil with autism/ADHD attacking other pupils or staff. This does happen and if the child is a large fully-grown male can lead to very serious injury. It is not just those with level 3 autism who can do this.

I think the best strategy to protect against bullying is to ensure your child is in a caring environment at school and is well integrated. This may be easier said than done, but it is possible for many people. Then the other pupils will look out for the one with special needs. This assumes you do not overdo it with who gets to be "special".

Special needs are not so special any more, as was highlighted recently in the UK. For the most privileged group of pupils, those going to private fee-paying schools, 41% are getting special treatment in their exams due to their various special needs. Even in the regular state schools, which for sure have a higher percentage of kids with actual special needs, 26% of pupils get extra time in exams.

Nearly one in three pupils in England given extra time in exams, says regulator

Nearly a third of pupils in England were given 25% extra time to complete their GCSEs and A-level exams following a surge in special exam access arrangements being granted, data from Ofqual has shown.

The figure is higher again among exam candidates in private schools where more than two in five received 25% extra time in the last academic year, according to England’s exams regulator.

The total number of approved special access arrangements for GCSE, AS and A-level exams rose by 12.3% in the 2023/24 school year compared to the year before, the data has revealed.

·         Independent centres 41.8%

·         Sixth form and FE colleges 35%

·         Non-selective state schools 26.5%

It comes as education leaders have suggested more pupils are seeking support after the pandemic due to a rise in young people with special educational needs and disabilities (Send) and mental health issues.

Requests for 25% extra time in exams was the most common approved access arrangement for pupils with learning difficulties or disabilities, followed by computer readers, scribes and speech recognition.

 

Folate supplementation in mothers prevent pesticides causing neurodevelopmental disorders in offspring

There is a lot of research about folate (vitamin B9), birth defects and autism. From the early 1990s women were encouraged to take folate supplements during pregnancy to avoid neural tube defects and other congenital abnormalities.

Some individuals have mutations in the MTHFR gene that impair their ability to convert folic acid into its active form, L-methylfolate. For such individuals, taking methylated folate supplements will be necessary.

More recently we have learned that some people with adequate folate intake can lack folate inside their brain. They have antibodies that block the transmission of folate across the blood brain barrier.

We saw how one clinician is prescribing high dose calcium folinate to couples wishing to reduce the risk of autism in their future offspring, if they test positive themselves for folate receptor auto-antibodies.

As we already know exposure to pesticides and some other unnatural chemicals during pregnancy can lead to neurodevelopmental disorders (NDDs) that include autism.

The paper below is interesting because it looks as how to minimize the potential damage caused by exposure to pyrethroid pesticides, one of the most common classes of pesticides in the US.


Folate prevents the autism-related phenotype caused by developmental pyrethroid exposure in prairie voles 

Neurodevelopmental disorders (NDDs) have dramatically increased in prevalence to an alarming one in six children, and yet both causes and preventions remain elusive. Recent human epidemiology and animal studies have implicated developmental exposure to pyrethroid pesticides, one of the most common classes of pesticides in the US, as an environmental risk factor for autism and NDDs. Our previous research has shown that low-dose chronic developmental pyrethroid exposure (DPE) changes folate metabolites in the adult mouse brain. We hypothesize that DPE acts directly on molecular targets in the folate metabolism pathway, and that high-dose maternal folate supplementation can prevent or reduce the biobehavioral effects of DPE. We exposed pregnant prairie vole dams to vehicle or deltamethrin (3 mg/kg every 3 days) with or without folate supplementation (5 mg/kg methylfolate every 3 days). The resulting DPE offspring showed broad deficits in five behavioral domains relevant to NDDs; increased plasma folate concentrations; and increased neural expression of SHMT1, a cellular folate cycle enzyme. Maternal folate supplementation prevented most of the behavioral phenotype (except for repetitive behaviors) and caused potentially compensatory changes in neural expression of FOLR1 and MTHFR, two other folate-related proteins. We conclude that DPE causes NDD-relevant behavioral deficits; DPE directly alters aspects of folate metabolism; and preventative interventions targeting folate metabolism are effective in reducing, but not eliminating, the behavioral effects of DPE.

 

A round-up of therapies to treat mouse autism

Treating human autism is not yet mainstream, but treating autism in mice has been going on for decades. Of course the idea is to use mouse models with a view to later treating humans.

The paper below is about mice, but it is actually a very good summary of the current status of treatment options more broadly.

It even covers the use of HDAC inhibitors to use epigenetics as a treatment tool. Click on the link to read the full text for free. 


The Use of Nutraceutical and Pharmacological Strategies in Murine Models of Autism Spectrum Disorder 

Autism spectrum disorder (ASD) is a common neurodevelopmental condition mainly characterized by both a scarce aptitude for social interactions or communication and engagement in repetitive behaviors. These primary symptoms can manifest with variable severity and are often paired with a heterogeneous plethora of secondary complications, among which include anxiety, ADHD (attention deficit hyperactivity disorder), cognitive impairment, sleep disorders, sensory alterations, and gastrointestinal issues. So far, no treatment for the core symptoms of ASD has yielded satisfactory results in a clinical setting. Consequently, medical and psychological support for ASD patients has focused on improving quality of life and treating secondary complications. Despite no single cause being identified for the onset and development of ASD, many genetic mutations and risk factors, such as maternal age, fetal exposure to certain drugs, or infections have been linked to the disorder. In preclinical contexts, these correlations have acted as a valuable basis for the development of various murine models that have successfully mimicked ASD-like symptoms and complications. This review aims to summarize the findings of the extensive literature regarding the pharmacological and nutraceutical interventions that have been tested in the main animal models for ASD, and their effects on core symptoms and the anatomical, physiological, or molecular markers of the disorder.

The body of research here summarized suggests that many therapeutic strategies have yielded positive results for ASD core symptoms and ASD-linked cellular, anatomical, and metabolic alterations at the preclinical level. These results ultimately confirm clinical and in vitro evidence regarding the main pathways involved in ASD pathogenesis and hint at the potential for the combination of different types of treatment. The studies reviewed here showed that a treatment’s success or failure in these models usually depends on administration timing. The best results are commonly achieved when protective treatment is given in the first weeks after birth or prenatally. Unfortunately, this is not easily translatable into clinical practice as ASD diagnosis, at the moment, postdates this time window. Moreover, it is notable that most of the treatments employed in these studies did not achieve significant improvements in all the behavioral tests or definitive success in clinical trials. Despite the exact causes for the disparity between promising preclinical results and modest or negative clinical outcomes remaining unknown, a few hypotheses can be formulated. The results of many tests commonly employed to measure sociability and repetitive behaviors in mice can be altered by other symptoms known to be observed in these murine models, such as altered motor coordination, cognitive impairment, and anxiety, which may lead scientists to overestimate the effect of certain treatments on social behavior. Moreover, poor translatability may also be ascribed to the heterogeneity in symptoms and genetic backgrounds found in ASD human patients which, conversely, is far more limited in these mice strains. Ultimately, other possible confounding factors such as interactions with concurrent medications, socio-economic elements, patient lifestyle, or concomitant diseases are significantly more frequent and variable in the human population. Poor translatability may be potentially alleviated by precision medicine approaches in clinical practice and by preclinical testing of single treatments in a variety of ASD murine models. Ultimately, the present literature shows that, despite the limited clinical translational success, murine models can be a valuable tool for testing a variety of treatments in ASD research.


 

Figure 2. Schematic representation of key elements of the mTOR pathway and of therapeutic interventions considered in murine models for ASD. Abbreviations: PIP2: phosphatidylinositol 4,5-bisphosphate PIP3: phosphatidylinositol 3,4,5-bisphosphate PI3K: phosphatidylinositol 3-kinase; PTEN: phosphatase and tensin homolog; Akt: protein kinase B; TSC1: tuberous sclerosis 1; TSC2: tuberous sclerosis 2; AMPK: AMP-activated protein kinase; mTOR: mammalian target of rapamycin; mTORC1: mTOR complex 1; mTORC2: mTOR complex 2; S6K: Ribosomal protein S6 kinase beta-1; eIF4E: eukaryotic Initiation Factor 4E; ULK complex: Unc-51-like kinase 1 complex; PKCa: protein kinase C alpha; P: phosphate group


You can see all the amino acids that have been trialed to modify mTOR (taurine, lysine, histidine and threonine) plus metformin and the potent rapamycin.

Also mentioned is the WHEN in what I call the what, when and where in autism treatment. This is the idea of treatment windows, when a specific therapy can potentially be beneficial.

This very concept was discussed in a recent paper on Rett syndrome.


Protein Loss Triggers Molecular Changes Linked to Rett Syndrome 

Key Facts

·         Early Gene Changes: Loss of MeCP2 leads to immediate gene expression dysregulation, affecting hundreds of genes.

·         Neuronal Impact: Dysregulated genes are linked to neuronal function, causing downstream circuit-level deficits.

·         Therapeutic Window: The study reveals a time frame between molecular changes and neurological symptoms, enabling early intervention opportunities.


Another transcription factor (TCF) that causes autism

There is a lot in this blog about TCF4 (transcription factor 4). Loss of this gene leads to Pitt Hopkins syndrome. Disruption of the gene is associated with schizophrenia and intellectual disability.

Mutations in TCF20 lead to a kind of autism plus intellectual disability called TCF20-Related Neurodevelopmental Disorder. Like Pitt Hopkins, this is a rare disorder, but milder misexpression of the gene is likely much more common. In the recent paper below we see which are the downstream effector genes.

Our old friends the sub-units of GABAa receptors are there. In this case it is GABRA1 and GABRA5 that are reduced.

Both GABRA1 and GABRA5 play essential but distinct roles in regulating neuronal inhibition. GABRA1 primarily contributes to synaptic inhibition and is critical in seizure and anxiety regulation, while GABRA5 is involved in tonic inhibition and cognitive processes.

Malfunctions in GABRA1 and GABRA5 can lead to autism, anxiety, schizophrenia, intellectual disability, epilepsy etc


Regulation of Dendrite and Dendritic Spine Formation by TCF20

Mutations in the Transcription Factor 20 (TCF20) have been identified in patients with autism spectrum disorders (ASDs), intellectual disabilities (IDs), and other neurological issues. Recently, a new syndrome called TCF20-associated neurodevelopmental disorders (TAND) has been described, with specific clinical features. While TCF20's role in the neurogenesis of mouse embryos has been reported, little is known about its molecular function in neurons. In this study, we demonstrate that TCF20 is expressed in all analyzed brain regions in mice, and its expression increases during brain development but decreases in muscle tissue. Our findings suggest that TCF20 plays a central role in dendritic arborization and dendritic spine formation processes. RNA sequencing analysis revealed a downregulation of pre- and postsynaptic pathways in TCF20 knockdown neurons. We also found decreased levels of GABRA1, BDNF, PSD-95, and c-Fos in total homogenates and in synaptosomal preparations of knockdown TCF20 rat cortical cultures. Furthermore, synaptosomal preparations of knockdown TCF20 rat cortical cultures showed significant downregulation of GluN2B and GABRA5, while GluA2 was significantly upregulated. Overall, our data suggest that TCF20 plays an essential role in neuronal development and function by modulating the expression of proteins involved in dendrite and synapse formation and function.


Based on these results, we analyzed the expression of neuronal proteins in TCF20-deficient neurons and found decreased levels of GABRA1, BDNF, PSD-95, and c-Fos in total homogenates (Figure 5) and in synaptosomal preparations (Figure 5) of shTCF20 rat cortical cultures. Additionally, GluN2B and GABRA5 were significantly downregulated, and GluA2 was significantly upregulated in synaptosomal preparations of shTCF20 rat cortical cultures (Figure 5).

On the subject of GABA type A receptor, we have a very recent paper from Poland that delves into this subject in great detail. 

Molecular mechanisms of the GABA type A receptor function

The GABA type A receptor (GABAAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia.


And finally …

Dr Frye has published a study that assessed the effect of his friend Dr Boles’ mitochondrial cocktail.

I did meet Dr Boles a while back at a conference in London. He came with his wife and a stock of NeuroNeeds products for sale, including SpectrumNeeds which was the subject of today’s paper. He was telling me all about the great food just across the border in Mexico and how he learnt Spanish.

A Mitochondrial Supplement Improves Function and Mitochondrial Activity in Autism: A double-blind placebo-controlled cross-over trial

Autism spectrum disorder (ASD) is associated with mitochondrial dysfunction but studies demonstrating the efficacy of treatments are scarce. We sought to determine whether a mitochondrial-targeted dietary supplement designed for children with ASD improved mitochondrial function and ASD symptomatology using a double-blind placebo-controlled cross-over design. Sixteen children [Mean Age 9y 4m; 88% male] with non-syndromic ASD and mitochondrial enzyme abnormalities, as measured by MitoSwab, received weight-adjusted SpectrumNeeds and QNeeds  and placebos matched on taste, texture and appearance during two separate 12-week blocks. Which product received first was randomized. The treatment significantly normalized citrate synthase and complex IV activity as measured by the MitoSwab. Mitochondrial respiration of peripheral blood mononuclear cell respiration, as measured by the Seahorse XFe96  with the mitochondrial oxidative stress test, became more resilient to oxidative stress after the treatment, particularly in children with poor neurodevelopment. The mitochondrial supplement demonstrated significant improvement in standardized parent-rated scales in neurodevelopment, social withdrawal, hyperactivity and caregiver strain with large effect sizes (Cohen’s d’ = 0.77-1.25), while changes measured by the clinical and psychometric instruments were not significantly different. Adverse effects were minimal. This small study on children with ASD and mitochondrial abnormalities demonstrates that a simple, well-tolerated mitochondrial-targeted dietary supplement can improve mitochondrial physiology, ASD symptoms and caregiver wellbeing. Further larger controlled studies need to verify and extend these findings. These findings are significant as children with ASD have few other effective treatments.


Conclusion

Plus ça change, plus c'est la même chose.

The more things change, the more they stay the same.

There isn’t much new that we don’t already know. This is probably good news.

I think for Dr Boles and our Spanish speaking readers you would say "Cuanto más cambian las cosas, más siguen igual." Correct me if I am wrong.






Tuesday, 26 October 2021

Suramin - Why do Clinical Trials in Autism Struggle to be Convincing? And Oxytocin fails in a large trial.

 

Results from the PaxMedica trial of Suramin


For me, Bumetanide for Autism is now ten-year-old news, for us it has been working since 2012; the next interesting drugs in the pipeline include Suramin and Leucovorin.

It is extremely difficult to trial Suramin at home, or indeed anywhere, and this makes it ever more desirable to many parents.

Leucovorin (calcium folinate) is easy to obtain; you can even buy liquid calcium folinate from iHerb.  You can find out pretty quickly if it produces a profound benefit on your child’s type of autism.

I wish Dr Frye and Professor Ramaekers good luck with the phase 3 trial of Leucovorin.  It certainly works for our adult reader Roger, but not for my 18 year old son, Monty.  Our reader SB’s child recently joined the group of confirmed responders.

After I started writing this post, the results came in of a large (250 children) trial of intranasal oxytocin.  This trial failed to show any benefit, over the placebo, in increasing social behaviors in autistic children. As I have mentioned previously, there is an inherent problem with intranasal oxytocin, the hormone has a very short action, its half-life is 2-6 minutes. It would be much more effective to provide a sustained release of oxytocin, which can indeed be achieved via adding a specific bacterium to the gut. The other problem with intranasal delivery is that you are not supposed to inhale the drug into your lungs, it has to stay in upper part of your nose. How likely is it that parents/children use the spray correctly?  There is even a special dispenser developed for drug delivery to the brain, but did they use it?

In my trials of L. reuteri DSM 17938 it was obvious that the oxytocin improved social behaviors, but I concluded that this was not such a big deal and certainly was not a treatment priority. How would you assess the effect? Very simple, you just count how many times your child is shaking boys’ hands and kissing the girls. I don’t suppose that was the measurement that Duke University used.

Many parents do use Syntocinon nasal spray and this failed trial does not mean they are imagining the effects.  If I was them, I would try L. reuteri DSM 17938 and compare the effect and use whichever is the most beneficial.

  

Suramin 

Suramin is moving towards its Phase 3 clinical trials and, very unusually, two different companies are trying to commercialize the same drug.  One company is PaxMedica and the other is Kuzani, who are ones that cooperate with Dr Naviaux.

In the background is Bayer, the German giant, who have been making Suramin for a hundred years as a therapy for African sleeping sickness and river blindness.  We are told that making Suramin is quite difficult, it is a large molecule; but if they could make it a century ago, how difficult can it really be?  The reality appears to be that Bayer do not want to supply PaxMedica or Kuzani and so they will have to figure out how to make it.  Suramin is sold as a research chemical, but there seem to be questions about its purity. The very cheap Suramin sold on the internet is very likely to be fake.

Today we will look at the data from the South African trial carried out by PaxMedica and take a look at their patent for their intranasal formulation.

We have heard very positive anecdotal reports from the very small initial trials carried out by Professor Naviaux.  Naviaux himself is very interesting, because even though he is not an autism researcher, he is far more knowledgeable than almost all of them on the subject of autism. If you read his papers, they show a rare global understanding of the subject.  This “big picture” is what you need to understand such a heterogenous condition as autism.

In the PaxMedica trial, 44 children completed the trial, so that should be enough to tell us something insightful about whether this drug is effective.

A recurring problem in all autism trials is how well the placebo performs.  Here again in the Paxmedica data we have a very impressive blue line – the placebo.  It is just salt and water and yet it is nearly as good as the trial drug (the orange line).

 


A big part of clinical trials is the statistics used to validate them.

Although I do have a mathematical background, I believe in “seeing is believing”.  The data should be crying out to you what it means.  If it is so nuanced that it needs a statistician to prove the effect, there likely is no effect.

In the above chart we want to see a decreasing slope that would possibly level off as the drug achieved its maximum effect.

What we see are two apparently effective therapies, blue and orange. 

The problem is that blue line is just water, with a bit of salt.

 

Show me the data

What we really want to see are results of each of the 44 participants, not the average.

There are likely groups:

·        Super responders

·        Responders

·        Partial responders

·        Non-responders

 

No statistician is needed.

 

The data from the Suramin trial needs to be presented in the kind of form used in the stem cell trial below:-



Since many hundreds of different biological conditions can lead to an autism diagnosis, we really should not expect there to be any unifying therapy that works for everyone.  Indeed, we should perhaps be suspicious of any therapy claimed to work for everyone.

We always get to hear about the super-responders in anecdotal reports.

We heard great things about Memantine/Namenda, but the phase 3 trial was a failure.  We heard great things about Arbaclofen (R-Baclofen), but the phase 3 trial failed. In Romania our reader Dragos is currently seeing great benefits from the standard version of Baclofen (a mixture of R-Baclofen and S-Baclofen).

My son is a super-responder to Bumetanide, but I know that most people are not. However, when I came across the “bumetanide has stopped” working phenomena, it became clear that the situation is more complex than a single one-time evaluation. We know why bumetanide can “stop working” and how to make it “start working again”.  An increase in inflammatory cytokines from the periphery (i.e. outside the brain) further increases the expression of NKCC1 in the brain and negates the effect of bumetanide; reduce the inflammation and bumetanide will start to work again.

  

Why does the placebo always do well in autism trials?

The assessments used to measure outcome are all observational, they are not blood tests or MRI scans.  They are highly subjective.

It has been suggested that just being in an autism trial improves symptoms of autism.  The parents give more attention to the child and this then skews the results.

My way round this problem in my n=1 trials was always to tell nobody about the new trial I was making and wait for unprompted feedback.  This works really well.

 

 

Who chooses the trial goal (the primary endpoint)?

I like the fact that in the Leucovorin trial the goal is speech.  It is a very simple target and relatively easy to measure.

For Bumetanide, I did suggest to the researchers that they used change in IQ as an endpoint.  Nice and simple, start with kids with IQ<70 and then recruit those who have a negative reaction (paradoxical response) to Valium/diazepam.  Then expect an increase in measured IQ of 10 to 40 points.  Then you would have a successful phase 3 trial.    

In many previous trials that ultimately failed, some people did see a benefit, but they were different benefits.  I did get a reader telling me how great Memantine (Namenda) had been for her child, when I asked why she told me that it was the only therapy that had ever solved her child GI problems.  That certainly was never considered as a trial goal/endpoint.

In my trial of Pioglitazone, I read the research about both the mechanism of action and the observed effects listed in the phase 2 trial:

"improvement was observed in social withdrawal, repetitive behaviors, and externalizing behaviors as measured by the Aberrant Behavior Checklist (ABC), Child Yale-Brown Obsessive Compulsive Scale (CY-BOCS), and Repetitive Behavior Scale–Revised (RBS-R)."

I was targeting something entirely different.  Based on the mechanism of action, specifically the reduction of the inflammatory cytokine IL-6, I expected a reduction in summertime raging.  It worked exactly as hoped for. This is the second summer we have used it.

Our reader Sara’s initial assessment of the effect of Pioglitazone is focused on the improvement in sleeping patterns.  This is great, assuming the benefit is maintained, but it is an entirely different benefit.

 

Was the trial drug actually taken?

I suspect in the bumetanide trial, many parents did not give the trial drug every day, as per their instructions, because the diuresis was too much bother.  I know from reader comments and emails that many parents stop giving bumetanide, even though their child is a responder.  Some schools refuse to allow bumetanide because of the disruption caused by frequent toilet breaks.

Because Suramin is given once a month by infusion, there is 100% certainty that the drug or placebo was actually taken.  This is a big plus.

Was the intranasal oxytocin correctly administered in the recent trial? I doubt it.

The problem with Leucovorin is that in a minority of children is causes aggression, even if you follow Prof Ramaeker’s advice and very slowly increase the dosage.  In the phase 3 trial parents should be informed of this possibility and told to report it and be invited to withdraw from the trial.  If they just stop the therapy to halt the aggression, but their data remains included in the study, the results are invalidated.

 

Intranasal Suramin

Patents are often a good source of information and they do also tell you something about the people who wrote them.

Here below is PaxMedica's patent for intranasal suramin:-


Compositions and methods for treating central nervous system disorders

These results demonstrate that an antipurinergic agent such as suramin can be delivered intranasally to achieve plasma and brain tissue levels and that variations in the brain tissue to plasma partitioning ratio can be observed. These results demonstrate that an antipurinergic agent such as suramin can be delivered to the brain of a mammal by intranasal (IN) administration. 

The following Table 1 provides the averaged accumulated amount, in mg, of suramin that has penetrated as a function of time


But how can the accumulated level after 6 hours be less than after 5 hours?


The results of the study are also shown graphically in FIG. 1 where the cumulative amount (mg) of drug permeated was plotted versus time in hours. These data demonstrate that Formulation B containing methyl β-cyclodextrin (methyl betadex) provides significantly better penetration, versus Formulations, A , C, and D in the tissue permeation assay. Also, as is seen from a comparison of Formulations A and D, having a higher drug concentration can be advantageous to increasing permeation.

 

Formulation A - suramin hexa-sodium salt at 100 mg/mL in water (no excipients) Formulation B - suramin hexa-sodium salt at 100 mg/mL in water, with 40% methyl β-cyclodextrin (methyl betadex) Formulation C - suramin hexa-sodium salt at 100 mg/mL in water, with 40% HP (hydroxyl propyl) -cyclodextrin Formulation D - suramin hexa-sodium salt at 160 mg/mL in water (no excipients)

 



FIG. 7 shows a plot comparing the total percentage of suramin in plasma in mice when administered by intraperitoneal (IP) injection once weekly for 4 weeks (28 days), intranasally (IN) daily for 28 days, intranasally (IN) every other day for 28 days, and intranasally (IN) once per week for 4 weeks (28 days).

 


FIG. 8 shows a plot comparing the total percentage of suramin in brain tissue in mice when administered by intraperitoneal (IP) injection once weekly for 4 weeks (28 days), intranasally (IN) daily for 28 days, intranasally (IN) every other day for 28 days, and intranasally (IN) once per week for 4 weeks (28 days).

 

Does anyone think the above chart makes any sense? 

 

The mice were maintained in group cages (6 mice per cage based on treatment group) in a controlled environment (temperature: 2 1.5 ± 4.5 °C and relative humidity: 35-55%) under a standard 12-hour light/1 2-hour dark lighting cycle (lights on at 06:00). Mice were accommodated to the research facility for approximately a week. Body weights of all mice were recorded for health monitoring purposes.

The mice were divided into the following 5 test groups, with 6 mice per group.

Group 1: Intraperitoneal (IP) injection of suramin, 20 mg/kg, administered weekly to animals beginning at 9 weeks of age and continuing for four weeks (i.e. given at Age Weeks 9 , 10 , 11 and 12). The suramin was formulated in Normal saline solution.

Group 2 : Intraperitoneal (IP) injection of saline, 5 mL/g, administered weekly to animals beginning at 9 weeks of age and continuing for four weeks (i.e. given at Age Weeks 9 , 10 , 11 and 12). This was a control group.

Group 3 : Intranasal (IN) administration of a formulation, described below, of suramin, at a concentration of 100 mg/mL x 6 mL per spray, administered as one spray per nostril, one time per day, (interval of each application is around 2 minutes to ensure absorption) for 28 days (total of 56 sprays over 28 day period) beginning at 9 weeks of age (i.e. given daily during Age Weeks 9 , 10 , 11 and 12).

Group 4 : Intranasal (IN) administration of a formulation, described below, of suramin, at a concentration of 100 mg/mL x 6 mL per spray, administered as one spray per nostril, one time every other day, for 28 days (total of 28 sprays over 28 day period) beginning at 9 weeks of age (i.e. given once every other day during Age Weeks 9 , 10, 11 and 12).

Group 5 : Intranasal (IN) administration of a formulation, described below, of suramin, at a concentration of 100 mg/mL x 6 ml_ per spray, administered as one spray per nostril, one time every week, for 4 weeks (28 days) (total of 8 sprays over 28 day period) beginning at 9 weeks of age (i.e. given once weekly during Age Weeks 9 , 10 , 11 and 12).

 

This question was posed to me:-

A nasal spray in a human is about 0.1 ml, how do you give a tiny mouse 6 ml per nostril?  Even 0.6 ml looks implausible.

 

Conclusion

Will Suramin pass a phase 3 trial?  I think if it is trialed on a random group of 400 young people with moderate or severe autism, it will very likely fail.

Professor Naviaux believes Suramin may be a unifying therapy, one that works in all autism.  The results from the PaxMedica study do not support this.

PaxMedica has the data showing the individual results.  Are there super-responders? Are there non-responders? Does Suramin perhaps make some people's autism worse?  All we can see is the average response, which is marginally better than the placebo; not what we expected after seeing the initial study.

Expecting Suramin to work well for everyone is raising the bar too high.  Try and identify markers for the responders and super-responders and then limit the phase 3 trial to these people.

Is intranasal delivery of Suramin going to achieve a therapeutic level inside the human brain?  Hopefully yes, but it may not work.

Is long term use of Suramin going to be safe? Will it require ever-increasing doses? Nobody knows, and note that safety was the original concern when Suramin’s use was proposed by Naviaux.

Intranasal administration has the best chance of being totally safe.  Spend a little extra money on the clever dispenser covered in this old post, that keeps 100% of the drug in the right place.

 

https://epiphanyasd.blogspot.com/2015/09/opn-300-oxytocin-and-autism.html

 

Maybe get someone other than a lawyer, to proof read your patent.

 




 

Wednesday, 24 March 2021

Pentoxifylline – Clearly an Effective add-on Autism Therapy for some

 


They also had Pentoxifylline for autism back in the 1970s – time for a revival?

 

Pentoxifylline and other more modern PDE inhibitors have been mentioned many times in this blog.


https://epiphanyasd.blogspot.com/search/label/PDE4

https://epiphanyasd.blogspot.com/search/label/Pentoxifylline


Pentoxifylline has been used in autism clinical trials dating back almost 50 years. A casual observer would naturally assume it cannot possibly be effective, or else surely its use would have caught on by now.

Some readers have long been using a PDE inhibitor as part of their child’s autism polytherapy. People have been asking me to let them know my thoughts on Pentoxifylline, the most accessible PDE inhibitor.

I think the key is that we are talking about an add-on, or adjunct, therapy.  We are no longer talking about pentoxifylline therapy vs no therapy, as they were in the 1970s.  Even in those decades-old studies there was a sub group of “super responders”.  Either the percentage of such responders, or the “super-response” itself was just too small to create waves leading to wider adoption.

In my autism world, I had been trying to develop more expressive language using sulforaphane and calcium folinate (leucovorin). A comment from Valentina prompted me to finally start my trial of Pentoxifylline.  It became apparent that the amount of expressive language was increasing, but the major factor was the Pentoxifylline not the calcium folinate (leucovorin).  To avoid GI side effects, I give Pentoxifylline after meals, which means it does sometimes get omitted/forgotten. It emerged that expressive language was clearly correlated to whether Pentoxifylline was taken or forgotten.

Reviewing the old studies, increased use of language does get a mention as an effect of Pentoxifylline.

 

What is the biological effect of Pentoxifylline?

Pentoxifylline is a non-selective PDE inhibitor, which you might think is a bad thing, since it looks like is it just PDE4 that we want to inhibit.

Pentoxifylline is also a non-selective antagonist of adenosine receptors A1 and A2A that are located in both the heart and brain.  These two adenosine receptors have important roles in the brain, regulating the release of other neurotransmitters such as dopamine and glutamate.

Pentoxifylline is normally prescribed because of its effects on your blood.  It improves red blood cell deformability, reduces blood viscosity and decreases the potential for platelet aggregation and blood clot formation.  So not a bad potential drug for the effects of severe Covid (which causes "sticky" blood), or indeed the extremely rare negative reaction to Astra Zeneca’s vaccine reported in Norway.  I had my Astra Zeneca Covid shot last week and Monty will be having his. Even young children with severe autism have been vaccinated where we live, at the parents' insistence. It looks like crossing international borders is going to to be much easier with proof of vaccination, so even if you had the virus the vaccine is useful.  Most people we know have had the virus, since where we live public policy was more towards protecting livelihoods than lives.  A lack of obesity and very old people kept the death rate quite low.  Now we seem to have more vaccines than demand for them.

Studies show that Pentoxifylline increases blood flow to the brain.  We know that blood flow to the brain in autism is impaired; the research describes it as unstable rather than just weak.

It sounds like Pentoxifylline is a polytherapy in itself, it has so many effects possibly relevant to autism.

 

Are Ibudilast and Roflumilast/Daxas an alternative to Pentoxifylline?

This question has come up already in the comments section.

We know that Ibudilast and Roflumilast are much more selective for PDE4 than Pentoxifylline.  We know that both Ibudilast and Roflumilast have interesting effects on the brain.

Pentoxifylline has some potentially beneficial effects that are not shared by Ibudilast or Roflumilast.  Pentoxifylline is cheap and proven safe in a series of trials in young children. 

I think that the typical autism dose of Pentoxifylline, 200mg twice a day, likely does not provide the effect on PDE4 provided by the small dose of Roflumilast/Daxas used in trials to improve cognition and sensory gating.

I think you would need to trial the drugs separately and, if they indeed provide a benefit, find the effective combination.  

So far I have trialed the 100 mcg dose of Roflumilast/Daxas on myself to check for GI side effects and see if it affects how thoughts and sensory inputs are processed, as the research suggests it does. I think it does indeed have the cognitive effects, but in me personally the GI effects also appear.  Some readers have told me this 100 mcg dose works for Aspies, and without side effects.

Some readers have tried Ibudilast.

Ling favours Pterostilbene, a natural PDE4 inhibitor. Pterostilbene has many other modes of action, including relating to inflammation, diabetes, aging and even cancer.

  

Conclusion 


Polytherapy is becoming fashionable these days and it is about time too.  Here it is all about MS (Multiple Sclerosis):-

 

UK to test existing drugs as treatment for MS in world-first trial

“Ultimately, MS will be treated with a combination of drugs,” said Gray. “You’ll have immunomodulatory drugs and anti-inflammatory drugs that stop the immune attacks, and they will be combined with treatments that can protect nerves from damage, and treatments that can repair the damaged myelin. That should stop MS.”

 

Each drug, given individually, will not deliver a dramatic result, but in combination the effective can be substantial.

Autism also requires polytherapy.  A few small steps can take you a large stride forwards. 

I did once consider using the analogy of fixing an old car, but I thought people might not like it and also autism develops very early in life not at the end; but Professor Ramaekers used the analogy on me, so I will follow suit.

You may need to fix many things on an old car, to get it back to its former glory.  The more problems you fix, the better the result will be.  You just have to start and keep on going.

In autism, and car restoration, the order in which you fix things does matter.  You probably need to learn this the hard way.

In a near perfect car (Asperger’s) really small issues, like faulty electric windows or squeaky suspension, can be extremely annoying, though the car remains perfectly functional; it gets you from A to B.

Pentoxifylline, by itself, is not going to “cure” anyone’s autism, but for some people it will be another step in that direction.

 

Another old idea has resurfaced - sodium phenylbutyrate (shortened to NaPB).

I think this drug was used for completely the wrong reasons, by a tiny number of people, a decade ago, but now common mouse models of autism are showing that this pan-HDAC inhibitor and ER-stress inhibitor has potent beneficial effects.  It is changing gene expression via an epigenetic mechanism.

If you look on Google, it appears as another quack therapy.


Four autism treatments that worry physicians – LA Times in 2009

Four that worry physicians. The Chicago Tribune examined four treatments in depth. Medical experts said that the therapies have not been proved to help children with autism and that each also carries risks. 

#4 Phenylbutyrate

Kennedy Krieger Institute: “No research conducted into use for autism.” -- Trine Tsouderos and Patricia Callahan

 

https://www.chicagotribune.com/lifestyles/ct-xpm-2009-11-23-chi-autism-science-nov23-story.html


Patricia Kane, who calls herself "the queen of fatty acid therapy," initially sounds like a skeptic of alternative autism treatments. She distances herself from the Defeat Autism Now! approach and says hyperbaric oxygen therapy, IVIG and chelation drugs all can be harmful.

"If you could see what happens to children when they're given some of these crazy interventions that ruin their life, and it's so painful," said Kane, whose office is in New Jersey. "Parents say, 'Patricia Kane will tell us the truth,' and I believe parents deserve the medical truth when it comes to their children."

One of her fans is Kent Heckenlively, a California science teacher who writes for ageofautism.com, self-described as the "daily web newspaper of the autism epidemic." After spending "a couple of hundred thousands" on treatments, from chelation to stem cell therapy, for his daughter with autism, Heckenlively said Kane appealed to him in part because her protocol includes lab tests run by the prestigious Kennedy Krieger Institute.

"I can trust them, I think," Heckenlively said.

Kane, who points to neuroinflammation as a feature of autism, discusses Pardo's study in a chapter she co-wrote on autism treatments for the book "Food and Nutrients in Disease Management."

Kane says many children with autism have a buildup in their brains of a substance called very-long-chain fatty acids. Her "PK Protocol" -- named after her initials -- is aimed at burning them off with a prescription drug, phenylbutyrate, that is normally used to treat extremely rare genetic disorders in which ammonia builds up in the body.

Side effects of phenylbutyrate include vomiting, rectal bleeding, peptic ulcer disease, irregular heartbeat and depression. No clinical trials have evaluated this drug as an autism therapy, and the idea that very-long-chain fatty acids have a role in autism is not proven by science.

Kane is not a medical doctor. When treating children with autism, she says, she works in concert with the child's physician, who supervises treatment.

She said she holds a doctorate in nutrition that was issued by Columbia Pacific University, an unaccredited institution that was shut down after a lengthy court battle with the state of California. An administrative law judge in 1997 found that the school awarded excessive credit for prior experiential learning, failed to employ qualified faculty and didn't meet requirements for issuing degrees.

Kane said Columbia Pacific granted her a doctorate after the school "consolidated my work," which Kane described as "clinical work" and continuing medical education courses for doctors. Her doctorate is valid, she said, because it was issued before the university ran into problems with the state.

Last year she was the subject of a television news investigation about her work with patients with ALS, also known as Lou Gehrig's disease. The disease, which affects motor neurons, is a death sentence.


but now in 2021, things have changed:-

 

Sodium phenylbutyrate reduces repetitive self-grooming behavior and rescues social and cognitive deficits in mouse models of autism

We found that acute and chronic treatment of NaPB remarkably improved, not only core ASD symptoms, including repetitive behaviors and sociability deficit, but also cognitive impairment in the BTBR mice. NaPB substantially induced histone acetylation in the brain of the BTBR mice. Intriguingly, the therapeutic effects of NaPB on autistic-like behaviors, such as repetitive behaviors, impaired sociability, and cognitive deficit also showed in the valproic acid (VPA)–induced mouse model of autism


These findings suggest that NaPB may provide a novel therapeutic approach for the treatment of patients with ASD.


Correcting miss-expressed genes is the holy grail for the treatment of many diseases and in particular for all those parents whose child has a single gene type of autism.  In this blog I also call them DEGs (differentially expressed genes); everyone with autism has some DEGs. There is a lot in this blog about HDAC inhibitors, these can modify gene expression via the epigenome.  HDAC inhitors therefore can potentially fix DEGs.  NaPB was approved 25 years ago by the FDA to treat urea cycle disorders and is used in children over 20 kg.  It is not cheap and as usual it is much more expensive in the United States, at a high dose it is crazily expensive like cancer drugs, many of which are also HDAC inhibitors.  NaPB is another bulk chemical they put in tablets and multiply that cost by whatever they feel like. There is a reaction against this trend in some countries, for example using cheap generic Potassium Bromide for Dravet syndrome, instead of the overly expensive tablets. 

NaPB is used off-label to treat ALS/motor neuron disease.