UA-45667900-1
Showing posts with label Clonazepam. Show all posts
Showing posts with label Clonazepam. Show all posts

Thursday, 21 September 2023

Big heads, the Car wash, Transcranial pulse stimulation, GABA alpha 5 and Potassium channel Kv3.1


Today’s post is a review of some interesting new research that relates to the scope of this blog.  It ranges from training young people with autism/ID to work at the car wash, to more complex science.

Let’s start with the easiest paper. Somewhat bizarrely it was carried out in Japan by researchers from India. I am a fan of teaching kids to wash cars but I was surprised to see that it would be covered in a published research study.

One often forgotten item to teach teenagers and young adults with autism or ID is how to safely use public transport, so they might travel independently to and from any future job. We have had a lot of success with this recently. Monty, now aged 20, can get all the way from home to various different locations across the city using public transport, including changing buses and with journey times more than one hour.

 

Increasing car washing competency in adolescents with autism and intellectual disabilities: Researching visual task evaluation

This study looked at how well visual task evaluation helped teenagers with autism and intellectual disabilities become more competent at car washing. For disabled people to promote their independence and employment chances, car washing skills are crucial. The goal of this study was to ascertain whether training techniques that include visual task evaluation can improve car washing proficiency in teenagers with autism and intellectual disabilities. 30 participants, ranging in age from 12 to 18, participated in a pre-test/post-test design. Randomly chosen groups of participants were put into the evaluation group for the visual task or the control group. According to the findings, the visual task evaluation group outperformed the control group in terms of car washing ability. Adolescents with autism and intellectual disabilities can learn skills more quickly and become more independent by including visual task evaluation into their teaching strategies. These results demonstrate the potential for such treatments to enhance their quality of life and employment chances.

 

Car washing with a pressure washer is great fun for most people and washing a car thoroughly has many individual steps to master, so it is good practice.

  

Head size

It has been known for decades that big heads (macrocephaly) and small heads (microcephaly) are a tell-tale sign of a neurodevelopment problem. Normally, big heads are linked to intellectual disability, but very small heads are also a warning sign.

Readers may recall the Zika virus epidemic in Brazil in 2015. This mosquito-borne virus caused pregnant women to give birth to children with microcephaly. Zika virus infection caused intellectual disability in babies. The severity of the intellectual disability varied from mild to severe. Babies with Zika virus infection may have difficulty learning and communicating. They may also have problems with problem-solving and abstract thinking. Hearing and vision can be impaired and growth is retarded.  

Head size parts autism into two major subtypes

Essentially opposite paths in fetal brain development may explain two major subtypes of autism. In one of these subtypes, an unusually high number of excitatory neurons in a key brain region leads to large heads, or macrocephaly, which affects roughly 20 percent of people with autism; in the other, a decreased number of the same cells in that area leads to more typical head sizes, a new study finds. 

This fundamental biological difference suggests that “therapeutic avenues may be drastically different for these subtypes,” says lead investigator Flora Vaccarino, professor of neuroscience at Yale University. “That in turn could explain why drug treatments for autism so far are failing.”

 

The opposite brain development paths found in this research may both lead to autism because they are each a case of imbalance, says investigator Alexej Abyzov, associate professor of biomedical informatics at the Mayo Clinic in Rochester, Minnesota. 

The full paper:- 

Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis

Idiopathic autism spectrum disorder (ASD) is highly heterogeneous, and it remains unclear how convergent biological processes in affected individuals may give rise to symptoms. Here, using cortical organoids and single-cell transcriptomics, we modeled alterations in the forebrain development between boys with idiopathic ASD and their unaffected fathers in 13 families. Transcriptomic changes suggest that ASD pathogenesis in macrocephalic and normocephalic probands involves an opposite disruption of the balance between excitatory neurons of the dorsal cortical plate and other lineages such as early-generated neurons from the putative preplate. The imbalance stemmed from divergent expression of transcription factors driving cell fate during early cortical development. While we did not find genomic variants in probands that explained the observed transcriptomic alterations, a significant overlap between altered transcripts and reported ASD risk genes affected by rare variants suggests a degree of gene convergence between rare forms of ASD and the developmental transcriptome in idiopathic ASD.

 

Head circumference at birth is a useful measurement, but what really matters is how it changes over time.  Hyperactive pro-growth signaling affects more than just brain growth, it also affects muscle development, which is easy to notice.  I have highlighted the graphic below several times in this blog and in my book.  It is a good summary of what is going on.

 


Kv3.1

Regular readers will know that I like ion channels. The reason is that dysfunctions in these channels really should be treatable.  Usually we are looking for channel blockers, but today with Kv3.1 we are looking for channel enhancers.

Ion channel enhancers increase the activity of ion channels without directly opening them. They do this by increasing the number of open channels, increasing the opening time of each channel, or decreasing the closing time of each channel.

  

At the heart of the study is a type of inhibitory neuron called GABAergic interneurons, which connect brain regions, playing vital roles in coordinating high-frequency brain activity. As a potential source of the excitatory/inhibitory imbalance in ASD and schizophrenia, evidence now points to malfunction of a type of potassium channel, Kv3.1, special to GABAergic interneurons. Denton and his team will aim to develop Kv3.1 enhancers and test their efficacy in restoring the balance of neural activity in a mouse model of ASD. In latter stages of this work, they’ll focus on key brain areas, using various lab techniques to carefully fill in neurological details surrounding any targeted drug effects.

“This grant creates opportunities for developing critically needed tool compounds to explore the role of Kv3.1 potassium channels in autism spectrum disorder and schizophrenia,” said Denton, professor of Anesthesiology and Pharmacology. “These are some of the most challenging and costly disorders going, and we’re excited to have this opportunity to take this work forward.”

 

Japanese researchers from the RIKEN Brain Science Institute are also thinking along the lines of targeting Kv3.1 to “correct aberrant developmental trajectories”. 

Kv3.1 channels regulate the rate of critical period plasticity 

The emergent function of fast-spiking PV-cell circuits during postnatal life may hold the key to a deeper understanding of critical periods in brain development (Reh et al., 2020) and the etiology of related mental illnesses as well (Do KQ and Hensch, 2015). The human neocortex notably shows a decrease in Kv3.1b channel protein in schizophrenia, a deficit that is restored by anti-psychotic drugs (Yanagi et al., 2014). Moreover, individuals with a KCNC1 loss-of-function variant can present intellectual disability without seizure and epilepsy (Poirier et al., 2017Park et al., 2019). Our work points toward a prophylactic psychiatry that may target these particular channels to correct aberrant developmental trajectories.

 

As with head size, the “when” is also important with correcting Kv3.1.  The idea is to intervene at a very early age to redirect the developmental trajectory, rather than just to improve today’s functioning.

The logical question is what drugs will Professor Denton come up with to explore the benefit of targeting Kv3.1.  Perhaps someone can beat him to it and save us all a couple of decades?

If you look up Kv3.1 or the gene that encodes it called KCNC1 you can read all about it.

https://www.genecards.org/cgi-bin/carddisp.pl?gene=KCNC1

 

As expected, there is no shortage of channel blockers – Nifedipine (used a calcium channel blocker), Miconazole (an antifungal), Capsaicin (an active component of chili peppers), Fluoxetine (better known as Prozac, which is vitamin P to many people) plus many more.

Professor Denton is hunting for a channel enhancer.  Keep an eye on what he comes up with. He has $2.7 million over 4 years to play with. 

 

Transcranial pulse stimulation

Many autism parents do not like drug therapies, but often like the idea of zapping the brain from outside. I liked the idea of Photo biomodulation (PBMT) a form of light therapy that utilizes light sources including lasers or LEDs.

 

Low Level Laser Therapy (LLLT) for Autism – seems to work in Havana


Home/Clinic based Photobiomodulation/Laser Therapy in Autism - acting on Light Sensitive Ion Channels, Mitochondria, Lymph Nodes and more


 

You could potentially do Low Level Laser Therapy (LLLT) at home.

Professor Manual Casanova is a fan of transcranial magnetic stimulation (TMS).

Today’s paper below is about transcranial pulse stimulation, which I suppose we can just call TPS.

Transcranial pulse stimulation (TPS) is a non-invasive brain stimulation technique that uses pulsed electrical or magnetic fields to stimulate the brain. It is a relatively new technique, but it has the potential to be used for a variety of purposes, including:

  • Treating neurological disorders such as Parkinson's disease, Alzheimer's disease, and depression
  • Enhancing cognitive function, such as memory and attention
  • Improving mood and well-being
  • Reducing pain
  • Promoting neuroplasticity, the ability of the brain to change and adapt

 


 

Effects of transcranial pulse stimulation on autism spectrum disorder: a double-blind, randomized, sham-controlled trial

 

Transcranial pulse stimulation has been proven effective to improve cognition, memory and depressive symptoms of Alzheimer’s disease, but supporting evidence on other neurological diseases or neuropsychiatric disorders remains limited. This study aimed to investigate the effects of transcranial pulse stimulation on the right temporoparietal junction, which is a key node for social cognition for autism spectrum disorder, and to examine the association between transcranial pulse stimulation and executive and social functions. This double-blinded, randomized, sham-controlled trial included 32 participants (27 males), aged 12–17 years with autism spectrum disorder. All eligible participants were randomized into either the verum or sham transcranial pulse stimulation group, on a 1:1 ratio, based on the Childhood Autism Rating Scale screening score. Sixteen participants received six verum transcranial pulse stimulation sessions (energy level: 0.2–0.25 mJ/mm2; pulse frequency: 2.5–4.0 Hz, 800 pulse/session) in 2 weeks on alternate days. The remaining 16 participants received sham transcranial pulse stimulation. The primary outcome measure included Childhood Autism Rating Scale score changes, evaluated by parents, from baseline to 3-month follow-ups. Secondary outcomes included a self-reported questionnaire responded to by parents and cognitive tests responded to by participants. A licensed mental health professional evaluated clinical global impression severity, improvement, efficacy and total score. Results revealed significant interactions in Childhood Autism Rating Scale and other secondary outcomes. Significant group and time effects were found in most secondary outcomes. Additionally, significant differences were found between the transcranial pulse stimulation and sham transcranial pulse stimulation groups in Childhood Autism Rating Scale and clinical global impression improvement and total score immediately after 2 weeks of transcranial pulse stimulation intervention (all P < 0.05), and effects were sustainable at 1- and 3-month follow-up, compared with baseline. The effect size of Childhood Autism Rating Scale (d = 0.83–0.95) and clinical global impression improvement (d = 4.12–4.37) were large to medium immediately after intervention and sustained at 1-month post-stimulation; however, the effects were reduced to small at 3-month post-stimulation (d = 2.31). These findings indicated that transcranial pulse stimulation over right temporoparietal junction was effective to reduce the core symptoms of autism spectrum disorder, as evidenced by a 24% reduction in the total Childhood Autism Rating Scale score in the verum transcranial pulse stimulation group. Additionally, the clinical global impression total score was reduced by 53.7% in the verum transcranial pulse stimulation group at a 3-month follow-up, compared with the baseline. Participants in the verum transcranial pulse stimulation group had shown substantial improvement at 1- and 3-month follow-ups, compared with baseline, although some of the neuropsychological test results were deemed statistically insignificant. Future replication of this study should include a larger sample derived from multi-nations to determine transcranial pulse stimulation as an alternative top-on treatment option in neuropsychiatry

 

TPS looks pretty impressive, based on the above study. TPS is available today, but it does need a lot of visits to the therapist. The effects are not permanent so you would have to keep going back for more.

People are doing transcranial direct current stimulation (tDCS) at home. 

People are zapping their brains at home to improve focus and clear brain fog. But is it safe?


For any kind of zapping therapy to be viable, it would have to be possible to do it yourself at home.

 

Targeting alpha 5 subunit of GABAA receptors

Some earlier posts in this blog did get rather complicated.  One field that I looked at in rather painful detail was the GABAA receptor. Some readers of this blog have children whose autism is entirely caused by a defect in this receptor, many other readers just see the effects of a GABAA malfunction caused by a problem with NKCC1/KCC2 expression resulting from the GABA developmental switch failing to occur.

I looked to me that targeting alpha 3 and alpha 5 subunits could well enhance cognition.

Alpha 3 is targeted by low dose Clonazepam, thanks to Professor Catterall.

Alpha 5 was targeted to treat Down syndrome, using a new drug called Basmisanil (an inverse agonist of alpha 5 subunit of GABAA). That work failed. I wrote about Cardiazol/ Pentylenetetrazol (PTZ) a drug that was widely used in the 1930s in mental hospitals to trigger seizures that were supposed to treat people with schizophrenia.  At much lower doses, it found a new purpose decades ago as an ingredient in cough medicine. 

The alpha 5 subunit is one of several subunits that can make up a GABAA receptor. GABAA receptors containing the alpha 5 subunit are thought to be involved in cognitive function, learning and memory, and mood regulation.

PTZ has been shown to block the action of GABA at alpha 5-containing GABAa receptors in animal studies.  

Variable Expression of GABRA5 and Activation of α5 -  a Modifier of Cognitive Function in Autism?

 

Sodium Benzoate and GABRA5 - Raising Cognitive Function in Autism 

Cardiazol, a failed Schizophrenia treatment from the 1930s, repurposed at low doses as a Cognitive Enhancer in Down Syndrome and likely some Autism

 

The logical human trial would be to use the cough mixture, Cardiazole that is already used in children. 

“We actual have quite a few readers from India and that is the only other country using this drug.  In India the producer is Nicholas Piramal and the brand name is Cardiazol Dicodid, it cost 30 US cents for 10ml.  So for less than $1, or 70 rupees, you might have a few months of cognitive enhancement, that is less than some people pay for 1 minute of ABA therapy.

If a few drops of this children’s cough medicine improves cognition please lets us all know.”

 

Back to recent research on alpha 5 that caught my attention.

 

An alpha 5-GABAa receptor positive allosteric modulator attenuates social and cognitive deficits without changing dopamine system hyperactivity in an animal model for autism

 Autism Spectrum Disorders (ASD) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABAA receptors (α5-GABAARs) SH-053-2’F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in a rat model for autism based on in utero VPA exposure. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2’F-R-CH3 could attenuate these changes. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2’F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Male and female adult VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2’F-R-CH3. Despite sex differences, our findings indicate α5-GABAARs positive allosteric modulators may effectively attenuate some core ASD symptoms

 

Fine tuning alpha 5, perhaps you need more, perhaps less?

 

Neurobiology and Therapeutic Potential of α5-GABA Type A Receptors

Despite being a genetically heterogeneous disorder, the potential utility for mechanism-based GABAAR pharmacologic treatment with ASDs is supported by shared pathologies both in patients and related mouse models.


  

PAM α5 GABAAR Therapeutic Applications

Neurodevelopmental Disorders

Mouse models of neurodevelopmental disorders that present with insufficient inhibitory tone show improvement with positive modulators of GABAAR signaling. In the Scn1a+/− mouse model of Dravet syndrome, a severe childhood epileptic encephalopathy syndrome with hyperactivity and autism behaviors, abnormal social behaviors and fear memory deficits were rescued following treatment with a benzodiazepine, clonazepam (Han et al., 2014). In an ASD mouse model with reduced GABAAR-mediated inhibition, the BTBR T+tf/J mouse, the α2,3 and 5 PAM L-838,417, improved deficits in social interaction, repetitive behaviors, and spatial learning (Han et al., 2014).

 

Postweaning positive modulation of α5GABAA receptors improves autism‐like features in prenatal valproate rat model in a sex‐specific manner 

Autism spectrum disorder (ASD), as a common neurodevelopmental disorder that encompasses impairments in social communication and interaction, as well as repetitive and restrictive behavior, still awaits an effective treatment strategy. The involvement of GABAergic neurotransmission, and especially a deficit of GABA A receptors that contain the α5 subunits, were implicated in pathogenesis of ASD. Therefore, we tested MP‐III‐022, a positive allosteric modulator (PAM) selective for α5GABAA receptors, in Wistar rats prenatally exposed to valproic acid, as an animal model useful for studying ASD. Postweaning rats of both sexes were treated for 7 days with vehicle or MP‐III‐022 at two doses pharmacokinetically determined as selective, and thereafter tested in a behavioral battery (social interaction test, elevated plus maze, spontaneous locomotor activity, and standard and reverse Morris water maze). Additional rats were used for establishing a primary neuronal culture and performing calcium imaging, and determination of hippocampal mRNA levels of GABRA5, NKCC1, and KCC2. MP‐III‐022 prevented impairments in many parameters connected with social, repetitive and restrictive behavioral domains. The lower and higher dose was more effective in males and females, respectively. Intriguingly, MP‐III‐022 elicited certain changes in control animals similar to those manifested in valproate animals themselves. Behavioral results were mirrored in GABA switch and spontaneous neuronal activity, assessed with calcium imaging, and also in expression changes of three genes analyzed. Our data support a role of α5GABAA receptors in pathophysiology of ASD, and suggest a potential application of selective PAMs in its treatment, that needs to be researched in a sex‐specific manner. Lay Summary In rats prenatally exposed to valproate as a model of autism, a modulator of α5GABAA receptors ameliorated social, repetitive and restrictive impairments, and, intriguingly, elicited certain autism‐like changes in control rats. Behavioral results were mirrored in GABA switch and spontaneous neuronal activity, and partly in gene expression changes. This shows a role of α5GABAA receptors in pathophysiology of ASD, and a potential application of their selective modulators in its treatment.

 

Note the researchers actually know about the GABA switch and so measured mRNA levels of NKCC1 and KCC2.

Note also that the lower dose of MP‐III‐022 was more effective in males and the higher dose in females.

We even have the recent associated PhD thesis from Anja Santrač:-

 

The influence of positive modulation of GABAA receptors containing the alpha5 subunit on behavioral changes of mice and rats in models of autistic disorders

The role of α5 GABAA receptors in learning and memory is well known. Therefore, we decided to examine the effect of the selective positive allosteric modulator (PAM) MP-III-022 on learning and memory of healthy animals, as well as GABRA5 expression. After demonstrating the needed tolerability and potential procognitive effects, the ligand would be used in an animal model of autism spectrum disorders (ASD). ASD is a neurodevelopmental disorder that encompasses impairments in social communication and interaction, as well as repetitive and restrictive behavior, still without an effective treatment. In this context, animal models that imitate specific disease’s symptoms are an excellent tool of translational research. Some of the most frequently used models are BTBR T+ tf/J mouse strain (BTBR) and valproate prenatal model (VPA). Our experiments have shown that the variability of α5GABAA receptors’ roles depends on its level of expression and localization, on the type and protocol of cognitive tasks, the timing of testing and intensity of pharmacological modulation. Obtained results proved potential beneficial effects of MP-III-022 in cognitive tasks. The BTBR model failed to express sufficient face validity, while VPA demonstrated adequate face validity and in part construct validity. Thus, we decided to subacutely apply MP-III-022 to juvenile VPA rats. In control animals, treatment led to GABRA5 decrease and to impairments similar to ones seen in ASD, suggesting the possible role of this receptor in the pathogenesis of the disease. Most importantly, our results demonstrated the potential of α5 GABAA receptor PAMs in secondary prevention and treatment of ASD, with the caveat that the drug development program would require adaptations tailored to sex-specific differences revealed.

 

Good job Anja. For our Serbian speaking readers, here is the link to her thesis:-

https://nardus.mpn.gov.rs/bitstream/handle/123456789/21424/Disertacija_13513.pdf?sequence=1&isAllowed=y

Perhaps we should connect her with Professor Ben-Ari?

  

Conclusion

Fine tuning alpha 5 subunits of GABAA receptors really should be followed up.  I think you need both options - a little bit more and a little bit less. It did not work for Roche in Down syndrome, but the potential remains.

Kv3.1 is another focused target for research, that very likely will become actionable. 

Transcranial pulse stimulation, like all the other zapping therapies, looks interesting, but it needs to be packaged in way that can actually be implemented every day at home.

In the meantime, at least getting your kid to wash the car is something we can all do.







Wednesday, 10 May 2023

Low dose Clonazepam for MIA Autism, Ponstan and TRPM3 in Intellectual Disability, Clemastine to restore myelination in Pitt Hopkins, Improving Oxytocin therapy with Maca, Lamotrigine for some autism

 

Monty in Ginza, Tokyo

Today’s post comes from Tokyo and looks at 5 therapies already discussed in previous posts and follows up on recent coverage in the research. They all came up in recent conversations I have been having.

·      Low dose Clonazepam  – Maternal Immune Activation model of autism

·      Ponstan – TRPM3 causing intellectual disability  (ID/MR)

·      Clemastine – improving myelination in Pitt Hopkins syndrome model

·      Oxytocin – Maca supplement to boost effect

·      Lamotrigine (an anti-epilepsy drug) to moderate autism

The good news is that many of same therapies keep coming up.


Ponstan and TRPM3 caused ID/MR

There is a lot in this blog about improving cognition, which is how I called treating ID/MR.  There are very many causes of ID and some of them are treatable.

ID/MR was always a part of classic autism and in the new jargon is part of what they want to call profound autism.

I was recently sent a paper showing how the cheap pain reliever Ponstan blocks the TRMP3 channel and that this channel when mutated can lead to intellectual disability and epilepsy.

Mefenamic acid selectively inhibits TRPM3-mediated calcium entry.

My own research has established that mefenamic acid seems to improve speech and cognition, as well as sound sensitivity.  The latter effect I am putting down to its effect on potassium channels. 

De novo substitutions of TRPM3 cause intellectual disability and epilepsy

The developmental and epileptic encephalopathies (DEE) are a heterogeneous group of chronic encephalopathies frequently associated with rare de novo nonsynonymous coding variants in neuronally expressed genes. Here, we describe eight probands with a DEE phenotype comprising intellectual disability, epilepsy, and hypotonia. Exome trio analysis showed de novo variants in TRPM3, encoding a brain-expressed transient receptor potential channel, in each. Seven probands were identically heterozygous for a recurrent substitution, p.(Val837Met), in TRPM3’s S4–S5 linker region, a conserved domain proposed to undergo conformational change during gated channel opening. The eighth individual was heterozygous for a proline substitution, p.(Pro937Gln), at the boundary between TRPM3’s flexible pore-forming loop and an adjacent alpha-helix. General-population truncating variants and microdeletions occur throughout TRPM3, suggesting a pathomechanism other than simple haploinsufficiency. We conclude that de novo variants in TRPM3 are a cause of intellectual disability and epilepsy.

 

Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3

This study reveals that mefenamic acid selectively inhibits TRPM3-mediated calcium entry. This selectivity was further confirmed using insulin-secreting cells. KATP channel-dependent increases in cytosolic Ca2+ and insulin secretion were not blocked by mefenamic acid, but the selective stimulation of TRPM3-dependent Ca2+ entry and insulin secretion induced by pregnenolone sulphate were inhibited. However, the physiological regulator of TRPM3 in insulin-secreting cells remains to be elucidated, as well as the conditions under which the inhibition of TRPM3 can impair pancreatic β-cell function. Our results strongly suggest mefenamic acid is the most selective fenamate to interfere with TRPM3 function. 

Here, we examined the inhibitory effect of several available fenamates (DCDPC, flufenamic acid, mefenamic acid, meclofenamic acid, niflumic acid, S645648, tolfenamic acid) on the TRPM3 and TRPV4 channels using fluorescence-based FLIPR Ca2+ measurements. To further substantiate the selectivity, we tested the potencies of these fenamates on two other TRP channels from different subfamilies, TRPC6 and TRPM2. In addition, single-cell Ca2+ imaging, whole-cell voltage clamp and insulin secretion experiments revealed mefenamic acid as a selective blocker of TRPM3.

  

Oxytocin

 Oxytocin does increase how emotional you feel; the difficulty is how to administer it in a way that provides a long lasting effect.  The half-life of oxytocin is a just minutes. The traditional method uses a nose spray.

I favour the use of a gut bacteria that stimulates the release of oxytocin in the brain.  The effect should be much longer lasting. Even then the effect is more cute than dramatic.

The supplement Maca does not itself produce oxytocin, but “it restores social recognition impairments by augmenting the oxytocinergic neuronal pathways”.

So Maca looks like an interesting potential add-on therapy to boost the effect of oxytocin.

One reader wrote to me with a positive report on using Maca by itself, without any oxytocin.

 

Oral Supplementation with Maca Improves Social Recognition Deficits in the Valproic Acid Animal Model of Autism Spectrum Disorder

Autism spectrum disorder (ASD) is a congenital, lifelong neurodevelopmental disorder whose main symptom is impaired social communication and interaction. However, no drug can treat social deficits in patients with ASD, and treatments to alleviate social behavioral deficits are sorely needed. Here, we examined the effect of oral supplementation of maca (Lepidium meyenii) on social deficits of in utero-exposed valproic acid (VPA) mice, widely used as an ASD model. Although maca is widely consumed as a fertility enhancer and aphrodisiac, it possesses multiple beneficial activities. Additionally, it benefits learning and memory in experimental animal models. Therefore, the effect of maca supplementation on the social behavioral deficit of VPA mice was assessed using a social interaction test, a three-stage open field test, and a five-trial social memory test. The oral supplementation of maca attenuated social interaction behavior deficit and social memory impairment. The number of c-Fos-positive cells and the percentage of c-Fos-positive oxytocin neurons increased in supraoptic and paraventricular neurons of maca-treated VPA mice. These results reveal for the first time that maca is beneficial to social memory and that it restores social recognition impairments by augmenting the oxytocinergic neuronal pathways, which play an essential role in diverse social behaviors.

Maca (Lepidium meyenii) belongs to the cruciferous family and grows at high altitudes in Peru. In 2002, it was transplanted from Peru to the Yunnan Province of China. It is rich in dietary fiber; has many essential amino acids and nutrients including vitamin C, copper, and iron; and its root contains bioactive compounds. It is globally consumed and is popularly used as a fertility enhancer and aphrodisiac. On the other hand, with its potential to possess multi-nutritious components, it is reported to have diverse functions, including immunomodulation, antioxidant, antidepressant, antirheumatic, UV radiation protection, hepatoprotective, anti-fatigue, and neuroprotective effects. Interestingly, although the mechanism of the neuronal effect of maca is unclear, the uptake of maca extract improves learning and memory in memory-impaired model mice induced by either ethanol, ovariectomy, or scopolamine. However, the effects of maca on social memory impairment in neurodevelopmental disorders, including ASD, have not yet been tested.

In this study, the effects of maca on ASD animal models, in utero VPA-exposed mice, were investigated. The effect on social recognition by maca uptake with gavage was assessed using the social interaction test, a three-stage open field test, and the five-trail social recognition test. We also explored whether maca intake affects oxytocinergic signaling pathways, which play an important role in various social behaviors.

In this study, we showed that maca uptake rescues the deficits of social behavior and social recognition memory in VPA mice, a mouse model of autism. The c-Fos immunoreactivity of oxytocinergic neurons in SON and PVN increased significantly after maca treatment in VPA mice. Following previous studies indicating that OT administration ameliorates the impairment of social behavior in VPA mice, maca may also have improving effects on the deficit of social behavior and social recognition memory of VPA mice, probably by activating the OT neuronal pathway. Previous studies showed that maca could improve cognitive function in the mice model of impaired cognitive memory induced by either ovariectomy, ethanol, or scopolamine. Further studies are necessary to elucidate the potential link between maca and OT and to determine which components are involved in improving social recognition memory.

We have shown that maca improves the impairment of social memory and social behavioral deficits through oxytocinergic system modulation in this study. Although maca may not have an immediate effect on social behavioral deficits and takes days or weeks to demonstrate the effects, behavioral improvements, were visible regardless of the time of oral intake. The time between the very last oral intake of maca and the start of the social behavioral experiments in this study was more than 16 h. The duration of the maca’s effect on social behavioral deficits after the supplementation period is being investigated in our follow-up experiments. The possibility of the persistent effect of maca is very appealing, given that OT does not have a sustained effect due to its rapid metabolism, despite its immediate effects. Therefore, taking maca as a supplement while also receiving repeated OT treatment may have a synergistic, sustainable effect on improving social impairment in patients with ASD. Maca is already being used as a dietary supplement worldwide and has a high potential for practical applications.

 

This study showed for the first time that maca supplementation improves the impairment of social recognition memory in ASD model mice. We added the mechanism that social memory improvement may occur through the upregulation of oxytocinergic pathways. Maca highlights the possibility of treating social deficits sustainably in individuals with ASDs.

 

Low dose clonazepam

Professor Catterall was the brains behind low dose clonazepam for mice, I just translated it across to humans. It is one way to modify the E/I (excitatory/inhibitory) imbalance in autism.

I found that it gave a boost to cognition. Not as big as bumetanide, but worth having nonetheless.

I do not believe you have to be a bumetanide responder to respond well to low dose clonazepam.

Several people have written to me recently to say it works for their child.

Our reader Tanya is interested in the Maternal Immune Activation (MIA) trigger to autism. She highlighted a recent study showing how and why clonazepam can reverse autism in the MIA mouse model of autism. 

Clonazepam attenuates neurobehavioral abnormalities in offspring exposed to maternal immune activation by enhancing GABAergic neurotransmission

Ample evidence indicates that maternal immune activation (MIA) during gestation is linked to an increased risk for neurodevelopmental and psychiatric disorders, such as autism spectrum disorder (ASD), anxiety and depression, in offspring. However, the underlying mechanism for such a link remains largely elusive. Here, we performed RNA sequencing (RNA-seq) to examine the transcriptional profiles changes in mice in response to MIA and identified that the expression of Scn1a gene, encoding the pore-forming α-subunit of the brain voltage-gated sodium channel type-1 (NaV1.1) primarily in fast-spiking inhibitory interneurons, was significantly decreased in the medial prefrontal cortex (mPFC) of juvenile offspring after MIA. Moreover, diminished excitatory drive onto interneurons causes reduction of spontaneous gamma-aminobutyric acid (GABA)ergic neurotransmission in the mPFC of MIA offspring, leading to hyperactivity in this brain region. Remarkably, treatment with low-dose benzodiazepines clonazepam, an agonist of GABAA receptors, completely prevented the behavioral abnormalities, including stereotypies, social deficits, anxiety- and depression-like behavior, via increasing inhibitory neurotransmission as well as decreasing neural activity in the mPFC of MIA offspring. Our results demonstrate that decreased expression of NaV1.1 in the mPFC leads to abnormalities in maternal inflammation-related behaviors and provides a potential therapeutic strategy for the abnormal behavioral phenotypes observed in the offspring exposed to MIA.

 

Pitt Hopkins – Clemastine and Sobetirome

Poor myelination is a feature of much autism and is a known problem in Pitt Hopkins syndrome.

I did cover a paper a while back where the Pitt Hopkins researchers showed that genes involved in myelination are down-regulated not only in Pitt Hopkins, but in several other popular models of autism.

From the multiple sclerosis (MS) research we have assembled a long list of therapies to improve different processes involved in myelination. Today we can add to that list sobetirome (and the related Sob-AM2). Sobetirome shares some of its effects with thyroid hormone (TH), it is a thyroid hormone receptor isoform beta-1 (THRβ-1) liver-selective analog.

Some people do use thyroid hormones to treat autism, and indeed US psychiatrists have long used T3 to treat depression.

The problem with giving T3 or T4 hormones is that it has body-wide effects and if you give too much the thyroid gland will just produce less.

One proposed mechanism I wrote about long ago is central hypothyroidism, that is a lack of the active T3 hormone just within the brain. One possible cause proposed was that oxidative stress reduces the enzyme D2 that is used to convert circulating prohormone T4 to T3. The result is that your blood test says your thyoid function is great, but in your brain you lack T3.

It looks like using sobetirome you can spice up myelination in the brain, without causing any negative effects to your thyroid gland.

Rather surprisingly, sobetirome is already sold as a supplement, but it is not cheap like Clemastine, the other drug used in the successful study below.

 

Promyelinating drugs promote functional recovery in an autism spectrum disorder mouse model of Pitt–Hopkins syndrome

Pitt–Hopkins syndrome is an autism spectrum disorder caused by autosomal dominant mutations in the human transcription factor 4 gene (TCF4). One pathobiological process caused by murine Tcf4 mutation is a cell autonomous reduction in oligodendrocytes and myelination. In this study, we show that the promyelinating compounds, clemastine, sobetirome and Sob-AM2 are effective at restoring myelination defects in a Pitt–Hopkins syndrome mouse model. In vitro, clemastine treatment reduced excess oligodendrocyte precursor cells and normalized oligodendrocyte density. In vivo, 2-week intraperitoneal administration of clemastine also normalized oligodendrocyte precursor cell and oligodendrocyte density in the cortex of Tcf4 mutant mice and appeared to increase the number of axons undergoing myelination, as EM imaging of the corpus callosum showed a significant increase in the proportion of uncompacted myelin and an overall reduction in the g-ratio. Importantly, this treatment paradigm resulted in functional rescue by improving electrophysiology and behaviour. To confirm behavioural rescue was achieved via enhancing myelination, we show that treatment with the thyroid hormone receptor agonist sobetirome or its brain penetrating prodrug Sob-AM2, was also effective at normalizing oligodendrocyte precursor cell and oligodendrocyte densities and behaviour in the Pitt–Hopkins syndrome mouse model. Together, these results provide preclinical evidence that promyelinating therapies may be beneficial in Pitt–Hopkins syndrome and potentially other neurodevelopmental disorders characterized by dysmyelination.

 

Sobetirome  (also called GC-1)

Sobetirome is a thyroid hormone receptor isoform beta-1 (THRβ-1) liver-selective analog.

In humans, sobetirome lowers plasma LDL cholesterol and reduced plasma triglycerides, while its liver-selective activity helped avoid the side effects seen with many other thyromimetic agents.

 

Myelin repair stimulated by CNS-selective thyroid hormone action

Oligodendrocyte processes wrap axons to form neuroprotective myelin sheaths, and damage to myelin in disorders, such as multiple sclerosis (MS), leads to neurodegeneration and disability. There are currently no approved treatments for MS that stimulate myelin repair. During development, thyroid hormone (TH) promotes myelination through enhancing oligodendrocyte differentiation; however, TH itself is unsuitable as a remyelination therapy due to adverse systemic effects. This problem is overcome with selective TH agonists, sobetirome and a CNS-selective prodrug of sobetirome called Sob-AM2. We show here that TH and sobetirome stimulated remyelination in standard gliotoxin models of demyelination. We then utilized a genetic mouse model of demyelination and remyelination, in which we employed motor function tests, histology, and MRI to demonstrate that chronic treatment with sobetirome or Sob-AM2 leads to significant improvement in both clinical signs and remyelination. In contrast, chronic treatment with TH in this model inhibited the endogenous myelin repair and exacerbated disease. These results support the clinical investigation of selective CNS-penetrating TH agonists, but not TH, for myelin repair.

 

Compound protects myelin, nerve fibers

 

Research could be important in treating, preventing progression of multiple sclerosis, other neurodegenerative diseases

A compound appears to protect nerve fibers and the fatty sheath, called myelin, that covers nerve cells in the brain and spinal cord. The new research in a mouse model advances earlier work to develop the compound - known as sobetirome - that has already showed promise in stimulating the repair of myelin.

Lead author Priya Chaudhary, M.D., assistant professor of neurology in the OHSU School of Medicine who is focused on developing therapies for neurodegenerative diseases, said that the technique is a common step in drug discovery.

"It is important to show the effectiveness of potential drugs in a model that is most commonly used for developing new therapies," Chaudhary said.

The researchers discovered that they were able to prevent damage to myelin and nerve fibers from occurring, by stimulating a protective response in the cells that make and maintain myelin. They also reduced the activity of migroglia, a type of inflammatory cell in the brain and spinal cord that's involved in causing damage in multiple sclerosis and other diseases.

"The effects are impressive and are at least in part consistent with a neuroprotective effect with particular inhibition of myelin and axon degeneration, and oligodendrocyte loss," the authors write.

The discovery, if proven in clinical trials involving people, could be especially useful for people who are diagnosed with multiple sclerosis early in the disease's progression.

"The drug could protect the nervous system from damage and reduce the severity of the disease," Bourdette said.

 

Does Lamotrigine have the potential to 'cure' Autism?

Recently headlines appeared like this one:-

Scientists 'CURE autism' in mice using $3 epilepsy drug

It referred to the use of the epilepsy drug Lamotrigine to treat a mouse model of autism, caused by reduced expression of the gene MYT1L.

What the tabloid journalists failed to notice was that there has already been a human trial of Lamotrigine in autism.  That trial was viewed as unsuccessful by the clinicians, although the parents did not agree.

There were many comments in the media from parents whose child already takes this drug for their epilepsy and they saw no reduction in autism. There were some who found it made autism worse.

 

MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention

 

Lamotrigine therapy for autistic disorder: a randomized, double-blind, placebo-controlled trial

In autism, glutamate may be increased or its receptors up-regulated as part of an excitotoxic process that damages neural networks and subsequently contributes to behavioral and cognitive deficits seen in the disorder. This was a double-blind, placebo-controlled, parallel group study of lamotrigine, an agent that modulates glutamate release. Twenty-eight children (27 boys) ages 3 to 11 years (M = 5.8) with a primary diagnosis of autistic disorder received either placebo or lamotrigine twice daily. In children on lamotrigine, the drug was titrated upward over 8 weeks to reach a mean maintenance dose of 5.0 mg/kg per day. This dose was then maintained for 4 weeks. Following maintenance evaluations, the drug was tapered down over 2 weeks. The trial ended with a 4-week drug-free period. Outcome measures included improvements in severity and behavioral features of autistic disorder (stereotypies, lethargy, irritability, hyperactivity, emotional reciprocity, sharing pleasures) and improvements in language and communication, socialization, and daily living skills noted after 12 weeks (the end of a 4-week maintenance phase). We did not find any significant differences in improvements between lamotrigine or placebo groups on the Autism Behavior Checklist, the Aberrant Behavior Checklist, the Vineland Adaptive Behavior scales, the PL-ADOS, or the CARS. Parent rating scales showed marked improvements, presumably due to expectations of benefits.


One reader of this blog who heard all about the news and was sceptical, since after all it is a mouse model. Her 8 year old non-verbal child was not happy taking the drug Keppra and was already scheduled to try Lamotrigine. 

Within a week his teacher called to say he was saying his ABCs, the next week he was counting out loud, the following month he’s attempting to repeat words of interest and this week he’s spelling animals by memory, dolphin, duck, wolf, chicken, pig, etc.

We are 2 months in and at 50mg, our target dose is 100mg bid. Obviously with our success, I’ve been working with his doctor and will continue to.”

 

Conclusion

Even though every day new autism research is published, there is so much already in this blog that not much appearing is totally new to regular readers.

We saw several years ago that low dose clonazepam should be beneficial to some people with autism, in particular Dravet syndrome. Today we learnt a little more about why Nav1.1 might be disturbed beyond those with Dravet syndrome. In the maternal immune activation model it seems to be a winner. It seems to benefit many of those who have trialed it.

Treating myelination deficits has been well covered in this blog. In previous posts we saw how Pitt Hopkins syndrome researchers showed how myelination gene expression was disturbed in a wide range of autisms. Today we saw evidence to support such therapy and we discovered a new drug.

Oxytocin does help some people with autism, but not as much as you might expect. Today we learnt of a potential add on therapy, a supplement called Maca.

The idea that anti-epilepsy drugs might help some autism has been well covered. From low dose valproate to low dose phenytoin from Dr Philip Bird in Australia.

Treatment of Autism with low-dose Phenytoin, yet another AED

Recent research suggested that Lamotrigine should help some with autism and today you learned that it really does help in one case. The fact that a tiny study a few years ago suggested no responders just tells us that only a small subgroup are likely to benefit.

We already know that some people's autism is made worse by their epilepsy therapy. This is just what you would expect. Time to find a different epilepsy therapy.

My favorite new therapy, low dose mefenemic acid / ponstan has numerous effects. One reader without autism, but with an unusual visual dysfunction (visual snow syndrome) and a sound sensitivity problem contacted me a while to see if NKCC1 might be the root of his problem. I suggested he try Ponstan, which did actually work for him and is easy to buy where he lives. Now he sends me research into all its possible modes of action. One mode of action relates to a cause of intellectual disability (ID/MR). Is this a factor in why Ponstan seems to improve speech and cognition in some autism? I really don't mind why it works - I just got lucky again, that is how I look at it. The more I read the luckier I seem to get.