UA-45667900-1
Showing posts with label Cocoa. Show all posts
Showing posts with label Cocoa. Show all posts

Monday, 6 May 2019

Mushrooms and Cognitive Function - Something healthy in the English Breakfast!




Breakfast overlooking the river Thames


















The more typical English Breakfast


If you happen to stay at a very nice hotel in London, the best meal to have is breakfast and after that comes tea.  The other meals are unlikely to feature much memorable English food.

Whether it is the five-star Savoy, overlooking the river Thames, or the Travelodge by the station, mushrooms will be on the menu. 

The movers and shakers actually get up early and have their power meetings over breakfast at the Savoy. This is not so expensive and a good way to experience British cuisine, served in a much more spacious environment than most restaurants.  Scotland contributes its porridge and black pudding, kippers might be on offer, but there will be mushrooms, a regular part of even the humblest hotel’s English breakfast.


Eating mushrooms more than twice a week could prevent memory and language problems occurring in the over-60s, research from Singapore suggests.
A unique antioxidant present in mushrooms could have a protective effect on the brain, the study found.
The more mushrooms people ate, the better they performed in tests of thinking and processing. The researchers point to the fact that mushrooms are one of the richest dietary sources of ergothioneine - an antioxidant and anti-inflammatory which humans are unable to make on their own.
Mushrooms also contain other important nutrients and minerals such as vitamin D, selenium and spermidine, which protect neurons from damage. 



We examined the cross-sectional association between mushroom intake and mild cognitive impairment (MCI) using data from 663 participants aged 60 and above from the Diet and Healthy Aging (DaHA) study in Singapore. Compared with participants who consumed mushrooms less than once per week, participants who consumed mushrooms >2 portions per week had reduced odds of having MCI (odds ratio = 0.43, 95% CI 0.23–0.78, p = 0.006) and this association was independent of age, gender, education, cigarette smoking, alcohol consumption, hypertension, diabetes, heart disease, stroke, physical activities, and social activities. Our cross-sectional data support the potential role of mushrooms and their bioactive compounds in delaying neurodegeneration.




Fig. 1. Functional dependence of mild cognitive impairment on mushroom consumption (treated as continuous variable): the solid curve is estimated via the smoothing spline approach. Adjusted for age, gender, education, cigarette smoking, alcohol consumption, hypertension, diabetes, heart diseases, stroke, physical activities, social activities.

Using data from the Diet and Healthy Aging Study in Singapore, we found that mushroom consumption was associated with reduced odds of having MCI. The reduction was significant for participants who consumed greater than 2 portions of mushrooms per week

The observed correlation between mushrooms and reduced odds of MCI in our study sample is biologically plausible. Certain components in mushrooms, such as hericenones, erinacines, scabronines and dictyophorines may promote the synthesis of nerve growth factors. Bioactive compounds in mushrooms may also protect brain from neurodegeneration by inhibiting production of amyloid- and phosphorylated tau, and acetylcholinesterase. Mushrooms are also one of the richest dietary sources of ergothioneine (ET). ET, a thione-derivative of histidine is an unique putative antioxidant and cytoprotective compound. While humans are unable to synthesize ET, it can be readily absorbed from diet (main source is mushrooms) and actively accumulated in the body and the brain via a specific transporter, OCTN1. Our recent study in elderly Singaporeans revealed that plasma levels of ET in participants with MCI were significantly lower than age-matched healthy individuals, leading us to believe that a deficiency in ET may be a risk factor for neurodegeneration, and increase ET intake through mushroom consumption might possibly promote cognitive health.

In summary, using community-based data in Singapore, we found that mushroom consumption was associated with reduced odds of MCI. Based on current evidence, we propose that mushroom consumption could be a potential preventive measure to slow cognitive decline and neurodegeneration in aging.


Conclusions

Studying all possible forms of cognitive impairment is interesting if you want to understand autism. 

Mushroom would appear to have a similar scale of potential benefit in MCI (mild cognitive impairment) to cocoa flavanols, which have been commercialized as a therapy by Mars. 

We did see previously how one specific type of mushroom (Lion’s Mane) has a particular effect of raising levels of NGF (nerve growth factor).  Oyster mushrooms produce Lovastatin.

Mushroom contain spermidine and so will improve autophagy, the intracellular garbage collection service that is impaired in many neurological conditions.

Eat mushrooms.





Friday, 17 November 2017

Beetroot - Cold Hands, Leukoaraiosis, Psychosis and Anxiety in Schizophrenia





Karimnagar, India, where Schizophrenic Rats respond well to Beetroot Juice

If you are not old enough to be interested in dementia, skip through those parts of this post and read about schizophrenic mice and beetroot juice.
There have been earlier posts regarding using nitric oxide (NO) to improve circulation and derive a cognitive benefit.
Many sportsmen have followed up on the research studies that show exercise endurance is improved after taking beet root juice. Since it is not a banned substance they are free to benefit from it.
We know that beet root does not only reduces blood pressure but it actually can increases perfusion, or blood flow, to the brain. Reduced blood flow to the brain is a feature of some dementia. Studies have used MRI to show that circulation is increased. A follow up study has recently been published which shows that beet root juice combined with exercise produced MRI results that resemble those of much younger adults.
In a previous post we saw that cocoa flavanols improved memory in older people and in effect brought them back to where they used to be 20 years previously. With cocoa the mechanism is not fully understood by is believed to “activate the nitric oxide system” in the brain. Cocoa does not produce nitric oxide in the way beet root does. Foods like beetroot and spinach contain large amounts of nitrates and they cause a measurable increase in circulating nitrites in the blood. The nitrites can later on become nitric oxide.
There is a lot of research into cocoa flavanols, mainly in relation to its benefit for those heart disease and more recently dementia. It also has benefits for anyone with diabetes, because it increases insulin sensitivity, as some readers of this blog have confirmed.
Cocoa flavanols appear to indirectly increase eNOS which then leads to more Nitric Oxide (NO). In addition there are antioxidant effects. eNOS reacts with L-arginine to produce NO.
But there is another way to make Nitic Oxide (NO), via nitrite that is circulating in your blood.  To increase nitrite you just eat nitrates, green leafy vegetables and beetroot.
It appears that eNOS does affect nitrite levels, so perhaps more eNOS means more NO is produced and then nitrite stays as nitrite and so the level of nitrite increases. Everything is inter-related.




Interestingly, statin drugs increase circulating nitrite levels just like beetroot.
NO bioavailability is determined by the balance between NO biosynthesis and its degradation by reactions with hemoglobin and reactive oxygen species (ROS).



So in people with oxidative stress there will be less NO. 

Nitric oxide (NO) is a potent signaling molecule that influences an array of physiological responses. It was traditionally assumed that NO was derived exclusively via the nitric oxide synthase (NOS) family of enzymes. This complex reaction requires a five electron oxidation of L-arginine and is contingent on the presence of numerous essential substrates (including O2) and co-factors. Recently an additional, O2-independent, NO generating pathway has been identified, where nitrite (NO2 ) can undergo a simple one electron reduction to yield NO. NO2 is produced endogenously from the oxidation of NO and also from the reduction of dietary nitrate (NO3 ) by facultative bacteria residing on the tongue. Recent data show that dietary NO3 supplementation, which increases the circulating plasma [NO2 ], reduces the O2 cost of submaximal exercise in healthy humans. This finding is striking given that efficiency during moderate-intensity exercise has been considered to be immutable. Therefore, dietary NO3 supplementation may represent a practical and cost-effective method to improve exercise efficiency and exercise tolerance in humans. Given that a NO3 -rich diet may have numerous cardiovascular and other health benefits, dietary NO3 intake may have important implications for human lifelong health and performance.
   
Cold hands
People with poor circulation tend to have cold hands and feet. From the comments in this blog it appears that many people with autism have cold hands/feet.
Do the many Nitric Oxide producing therapies used by sportsmen “warm up” cold hands?
Well we do actually now have some data on this subject. 


At least in the case of beetroot the answer is no.


L-arginine, L-citrulline, eNOS and NO    
It does appear that more eNOS can be beneficial. More eNOS means more NO as long as there is enough L-arginine. If you want to make more L-arginine, the most effective way is to eat L-citrulline, which is abundant in water melon.
It looks like some people lack arginine while others lack eNOS.  The males in clinical trials of citrulline and water melon, as a Viagra alternative, must lack L-arginine.
I think in autism the problem is lack of eNOS.
I thought L-citrulline might increase the positive effect of Agmatine that is very evident in Monty, aged 14 with ASD, but it has no additional effect.
Maybe some people do lack eNOS and l-arginine.
You do not need eNOS to make nitric oxide from the nitrites produced by beetroot juice.

Agmatine
We previously saw that the OTC supplement Agmatine increases eNOS, but it also actually affects BDNF.

Taken together, the findings of this study show that long-term agmatine administration increases the BDNF levels in both the hippocampus and amygdala, and also peripherally the NO synthesis and/or bioavailability, and corrects the age-related endothelial dysfunction, and hence may help in recovering vascular aging and vascular dementia.


Leukoaraiosis
Leukoaraiosis is a new word to this blog, it is very relevant to dementia, but it would likely only be relevant to autism if there has been hypoxia (lack of oxygen). Two readers of this blog do report hypoxia.
There is a lot of information in this blog about treating dementia and so for the sake of completeness I will elaborate further.
It appears that most people with Mild Cognitive Impairment (MCI) or dementia have lsome eukoaraiosis.
Leukoaraiosis also referred as ischemic demyelination or age-related white matter disease, is a radiological term given to white spots that appear on your MRI scan.

It is commonly observed in elderly people, and it is often a finding related to vascular dementia.  Histology from these lesions show atrophy of axons and decreased myelin. It is thought that localized hypoxia is what caused the damage.

On both CT and MRI, leukoaraiosis is characterized by bilateral patchy or confluent white matter changes.
So if your “autism” resulted from hypoxia, you might expect to see white spots on your MRI scan.
What is interesting is that leukoaraiosis may contribute to ongoing mild hypoxia.
It always seemed odd that people might benefit from HBOT (hyperbaric oxygen) years after they suffered acute hypoxia; but if the acute hypoxia left leukoaraiosis, perhaps this then reduces ongoing blood flow and thus leaves mild localized hypoxia, which does respond to treatment.
When blood flow is interrupted to part of the brain your doctor would call that a stroke.  A mini-stroke occurs when that blood flow is only temporarily interrupted.  These so-called transient ischemic attacks (TIA) are a warning sign of what may come shortly afterwards.
It appears in many people mini-strokes occur but remain unreported.
As a result of mini-strokes and/or leukoaraiosis perfusion in older people is not as good as in younger people and so cognition and memory suffer.
This can be partially addressed by making your blood more “slippery” using low dose aspirin, but the risk is that over the years blood vessels have narrowed and become brittle.  You then risk micro bleeds where the blood vessel cracks and the “slippery” blood can leak out.  This does happen in the brain
Cerebral microbleeds are not rare and are seen as another cause of cognitive impairment.





The conclusion for adults is that prevention is much better than cure. A diet rich in nitrates (spinach beetroot etc) and flavanols (cocoa etc) plenty of exercise and avoiding half a century of high cholesterol looks a wise choice. 

Emerging evidence suggests that silent strokes or lacunar infarctions, leukoaraiosis, and vascular diseases may be associated with cognitive impairment including dementia. We assessed the occurrence of these risk factors among various spectrum of cognitive dysfunction. A retrospective review of patients evaluated in Guam with the diagnosis of Memory Loss, Mild Cognitive Impairment (MCI) and Dementia from August 2006 to December 2014 was conducted. The history of stroke and co-morbid vascular diseases was identified. The neuro-imaging studies were reviewed to determine the presence of silent strokes and leukoaraiosis in patients without history of a clinical stroke. There were 585 patients included in the analysis. One hundred forty two patients having a diagnosis of memory loss, 95 have MCI and 348 have dementia. A history of stroke was present in 29% of patients with Memory Loss, 20% of patients with MCI and 30% of patients with dementia. Silent strokes without a history of clinical stroke were present in 10% of patients with memory loss and MCI, and 15% of patients with dementia. The presence of Leukoaraiosis was present in 50% of patients with memory loss, 56% of patients with MCI, and 60% of patients with dementia. Occurrences of vascular diseases were higher in patients with dementia than patients with Memory Loss and MCI. In conclusion, silent strokes, leukoaraiosis and vascular diseases are found to be more prevalent in patients with Dementia than those with Memory Loss and MCI.  

Oxygen deprived areas of the brain can change the way the brain functions in older adults. These areas of the brain were thought to be just a normal part of aging and could lead to other diseases such as Alzheimer's or stroke.
Leukoaraiosis is described as a condition where brain scans (CT or MRI) show bright white dots. These areas of the brain are deprived of oxygen and were considered to be a normal part of aging process.
"There has been a lot of controversy over these commonly identified abnormalities on MRI scans and their clinical impact. In the past leukoaraiosis has been considered a benign part of the aging process, like gray hair and wrinkles," said Kirk M. Welker, M.D., assistant professor of radiology in the College of Medicine at Mayo Clinic in Rochester, Minn., in a press release.
The condition is common in people who are above the age of 60. Recently, leukoaraiosis has been linked to diseases like Alzheimer's, hypertension and stroke.
"We know that aging is a risk factor for leukoaraiosis, and we suspect that high blood pressure may also play a role," Dr. Welker said.
Researchers from the Mayo Clinic obtained brain scans from 18 participants over the age of 60. The brain scans of these participants were matched against those obtained from a control group. Researchers found that these participants had lesions in the brain that were 25 millimeters long while some lesions in the brains of control group participants were about five millimeters long.
The participants were given tests based on words and visual patterns. All the participants were connected to brain scanners during the tests.
The participants of control group and study group completed the task with similar speed. However, researchers found that the brains of people who had moderate leukoaraiosis worked differently than people who had mild lesions.
They found that areas of brains that performed word-association tasks weren't activated during the test but areas that process visual patterns were highly activated.
"Different systems of the brain respond differently to disease. White matter damage affects connections within the brain's language network, which leads to an overall reduction in network activity," Dr. Welker said.
Welker said that diagnosing leukoaraiosis is important in people who are above 60, especially those who have to undergo brain surgery and those who are part of scientific research study.
Previous research shows that the probability of stroke increases with increase in leukoaraiosis spread.
"Our results add to a growing body of evidence that this is a disease we need to pay attention to Leukoaraiosis is not a benign manifestation of aging but an important pathologic condition that alters brain function," Welker said.  

Finally, now you know all about leukoaraiosis, back to beet root juice.


Background:
Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingestion of beet root juice (BRJ) increases blood flow to the brain and enhances exercise performance. Here, we examined whether there are synergistic effects of BRJ and exercise on neuroplasticity in the aging brain.
Methods:
Peak metabolic equivalent (MET) capacity and resting-state magnetic resonance imaging functional brain network organization are reported on 26 older (mean age = 65.4 years) participants randomly assigned to 6 weeks of exercise + BRJ or exercise + placebo.
Results:
Somatomotor community structure consistency was significantly enhanced in the exercise + BRJ group following the intervention (MBRJ = -2.27, SE = 0.145, MPlacebo = -2.89, SE = 0.156, p = .007). Differences in second-order connections between the somatomotor cortex and insular cortex were also significant; the exercise + BRJ group (M = 3.28, SE = 0.167) had a significantly lower number of connections than exercise + placebo (M = 3.91, SE = 0.18, p = .017) following the intervention. Evaluation of peak MET capacity revealed a trend for the exercise + BRJ group to have higher MET capacity following the intervention.
Conclusions:
Older adults who exercised and consumed BRJ demonstrated greater consistency within the motor community and fewer secondary connections with the insular cortex compared with those who exercised without BRJ. The exercise + BRJ group had brain networks that more closely resembled those of younger adults, showing the potential enhanced neuroplasticity conferred by combining exercise and BRJ consumption.  
BRJ is clearly an encouraging nutritional supplement that may improve functional health in older adults, and the proposed primary mechanism of benefit of BRJ is the rise in plasma nitrite caused by the high levels of dietary nitrate in BRJ (32). Consumed nitrate, once absorbed from the intestine, is taken up from the plasma by salivary glands and concentrated in saliva; nitrate is subsequently reduced to nitrite by oral bacteria and ultimately absorbed into the circulatory system (32,33). Nitrite appears to be reduced to NO during hypoxia. NO is an antioxidant and a potent vasodilator (34,35), is a critical relaxation factor synthesized in endothelial cells (36,37), and is key to vascular compliance. For this study, we hypothesized that reductions in brain blood flow associated with hypertension and aging associated leukoaraiosis result in low-grade hypoxia (38) and that these reductions might be offset by the NO-mediated vasodilation in hypoxic regions due to the increased amount of circulating nitrite from the BRJ ingestion. Indeed, results from our lab have shown that 24 hours of a high nitrate diet supplemented with a single dose of BRJ leads to increased regional CBF in older adults (39). Coupled with exercise (a hypoxia-inducing activity), we propose that the biological mechanism underlying the neural plasticity shown in Figure 1 resulted from increased NO bioavailability after drinking BRJ





Supplementation with nitrate (NO3)-rich beetroot juice has been shown to improve exercise performance and cardiovascular (CV) responses, due to an increased nitric oxide (NO) availability. However, it is unclear whether these benefits are greater in older adults who have an age-related decrease in NO and higher risk of disease. This systematic review examines 12 randomised, crossover, control trials, investigating food-based NO3 supplementation in older adults and its potential benefits on physiological and cognitive performances, and CV, cerebrovascular and metabolic health. Four studies found improvements in physiological performance (time to exhaustion) following dietary NO3 supplementation in older adults. Benefits on cognitive performance were unclear. Six studies reported improvements in CV health (blood pressure and blood flow), while six found no improvement. One study showed improvements in cerebrovascular health and two found no improvement in metabolic health. The current literature indicates positive effects of dietary NO3 supplementation in older adults on physiological performance, with some evidence indicating benefits on cardiovascular and cerebrovascular health. Effects on cognitive performance were mixed and studies on metabolic health indicated no benefit. However, there has been limited research conducted on the effects of dietary NO3 supplementation in older adults, thus, further study, utilising a randomised, double-blind, control trial design, is warranted.
  
Beet Root and Schizophrenia
Having read about cocoa and beet root a long time ago, I did try both on myself. I think beet root has effects that go well beyond lowering blood pressure.
There are of course no trials of beet root in autism, but there is one in the next closest thing, schizophrenia. Unfortunately it was in rats, but nonetheless the findings are interesting.
   
In recent years, there has been much focus on the apparent heterogeneity of schizophrenic symptoms. By contrast, this article proposes a unifying account emphasizing basic abnormalities of consciousness that underlie and also antecede a disparate assortment of signs and symptoms. Schizophrenia, is fundamentally a self-disorder or ipseity disturbance is  characterized by complementary distortions of the act of awareness, hyper reflexivity and diminished self-affection. Anxiety impacts people in ways that they are unaware. In the presence of anxiety, attention is highly directed towards threatening information. Recently, anxiety was found to impact task switching performance when threatening stimuli were present. In the current study, we examined the Anxiolytic and antipsychotic activity of Beet Root Juice (BRJ) in rats. This study reveals that the BRJ has showed decreased effects of turning behaviour, weaving behaviour, head bobbing and falling behaviour. It also showed decreased effect of loco motor activity and increase in catalepsy scoring. Thus it shows anti psychotic and anti anxiety effects.

Ketamine-Induced Stereotypic Behaviour in Mice
Animals were divided into five groups and each group consisted of four animals. The control animals received normal diet and treated with Ketamine (50 mg/kg) for 15 consecutive days. The animals of standard groups received Olanzapine (5 mg/kg) after 30 min Ketamine was given, (50 mg/kg) for 15 consecutive days. The animals of test groups received different concentrations of BRJ (2 , 4, 8% w/w) through a specially prepared diet and after 30 min Ketamine was given (50 mg/kg) for 15 consecutive days. Each rat was individually placed into plastic cages (37 × 24 × 30 cm3) divided into quadrants by lines on the floor and allowed to acclimatize for at least 30 min before the testing began. Behavioural tests were performed between 10 a.m. and 4 p.m. The stereotypic behaviour was assessed by counting the number of turning, weaving, head-bobbing and ataxia. Turning was measured by counting turn around every 15 min over 60 min. Weaving and head-bobbing were measured by counting its neck wave right and left, and go up and down every 15 min over 60 min. Ataxia was assessed by counting the number of falls of each rat on the floor of the cage every 15 min over 60 min period

Beet root juice was as effective as Olanzapine, an antipsychotic medication used to treat schizophrenia and bipolar disorder. (Ketamine is what creates the stereotypy)



Beet root juice was more effective than Haloperidol, a typical antipsychotic medication used in the treatment of schizophrenia, tics in Tourette syndrome and  mania in bipolar disorder


Beet root was as effective as Diazepam (aka Valium), is a medication of the benzodiazepine family that typically produces a calming effect 



I found the above paper very surprising. It certainly supports my feeling about the effects of beet root juice being beyond just lowering blood pressure. It definitely has a calming effect on me, so it is not just in rats.

Beetroot Juice for Autism?
Why not try just try it?
It does taste better when it is 25% apple juice and 75% beetroot.
You can also use freeze dried beetroot powder, which can be put in capsules.
It is not clear the amount of powder you need.
>150 ml a day of juice gives the exercise endurance effect and the calming (Diazepam) effect.  I would guess 2 or 3 fresh beet root would be equivalent.
Freeze dried beet root powder appears to remove 90% of the weight. So 3g of powder equals about 30g of beetroot.
Some people use a teaspoon of beetroot powder to control blood pressure. 
I expect there are studies on beetroot powder and blood pressure.
I concluded in Monty, aged 14 with ASD, that while Agmatine has a significant effect from the first day citrulline has no noticeable effect whatsoever (so no lack of L-arginine).  Having just read about the rats from Karimnagar, India in the above study I started offering Monty some of my beetroot juice. I have filled some large gelatin capsules with freeze dried beetroot, but it is not clear how much you would need.  Better to stick with the juice and see if it does anything.
Beet root is rich in betaine, which is also good for you.
I think Agmatine increases eNOS and also NO, by increasing dietary nitrate we make more nitrite which is available to make more NO as it gets depleted by oxidative stress (Reactive Oxygen Species). It looks like some people with autism have no shortage of L-arginine and so there is no effect from arginine or citrulline supplementation.
I think there is a rationale to consider Agmatine and Beetroot juice. We do have the surprising results from the schizophrenic rats, which do suggest there can be a benefit. 
I have to say that after a year of drinking 150ml of beetroot juice a day, I am a convert. You do get used to the taste. 
Beetroot, cinnamon and cocoa flavanols are quite potent potential non-drug therapies for dementia and not forgetting where you left your car keys.







Wednesday, 1 November 2017

OAT3 inhibitors for Bumetanide - Probenecid, but also Aspirin, Chlorogenic acid (Coffee), Epicatechin (Cocoa, Cinnamon) and more.


Today’s post is about OAT3, highlighted by the green lines.
The interventions reduce renal excretion and raise plasma
concentration rather than directly improving transport across the BBB

Today’s post is a collaboration. Our reader Ling pointed out research trying to boost the bioavailability of bumetanide using something clever called an OAT3 inhibitor.  This would reduce the rate at which the body excretes bumetanide and thus potentially improve its therapeutic effect.
Petra, our reader from Greece, pointed out that in her son Bumetanide seemed to work better when taken with Greek coffee and that that Greek Grandpas like to take their diuretics with a steaming Greek coffee.
Most people, me included, automatically think caffeine when someone mentions coffee.
So I assumed that caffeine might be an OAT3 inhibitor and I did make some experiments on that basis. There is no research data to support caffeine as an OAT3 inhibitor.
Recently I was again looking for other potential Bumetanide boosters.  The obvious one is called Probenecid.  Probenecid is used to treat gout because it lowers uric acid.
Aspirin has some odd effects; low dose aspirin will raise uric acid, but high dose aspirin will lower it. Aspirin is an OAT3 inhibitor.
OATs are a very niche subject, to add to the confusion sometimes you are better looking for SLC22A8, the gene that encodes the transporter. 
There was an earlier post on this subject, which showed that many NSAIDs inhibit OAT3, including Knut’s favourite Ponstan. They are not so well suited to continued use.

At the end of my little investigation I figured it out; there are many OAT3 inhibitors available, including some in your kitchen.  


Key points on OAT3 (Organic Anion Transporter 3)
If you want to increase the peak concentration and indeed the half-life of a drug that is excreted from the body by OAT3 (organic anion transporter 3), an OAT inhibitor is what you need.
The drug Probenecid is by far the best known OAT3 inhibitor and it is very potent. It has long been to boost the performance of penicillin type antibiotics to treat tough bacterial infections.
Probenecid, if available, may very well be the ideal bumetanide booster.
For adults a simple option is Greek/Turkish coffee. I see little downside as long as you can handle the caffeine. The Greeks live a long time and drink plenty of coffee.
For those who do not like caffeine you can go to active components within the coffee, which seem to be the chlorogenic acids (1,3- and 1,5-dicaffeoylquinic acid). They are sold as a weight loss supplement, the long established version is the French-made Svetol, but there are now others. They still contain 2- 3% caffeine.
Epicatechin, found in cinnamon, dark chocolate and high flavanol cocoa is another OAT3 inhibitor. Cocoavia, made by Mars, is used by some readers of this blog. Cocoa flavanols do clever things with nitric oxide (NO) and have been shown to improve mild cognitive impairment (MCI) and heart health by improving blood vessel elasticity.
Catechins are flavanols belonging to a family of closely related compounds, such as epicatechin, epigallocatechin, epicatechin gallate (EGC), and epigallocatechin gallate (EGCG). They are all slightly different. Catechin itself is not an OAT3 inhibitor; EGCG may or may not be.
Low dose aspirin is likely the cheapest OAT3 inhibitor. It also increases peripheral circulation, which could benefit some. Low dose aspirin has the downside of a small bleeding risk, mainly in old people, and there is a risk of Reye’s syndrome if given during/after a viral infection.
I think for adults a Greek coffee may be the best. For people who have a profound benefit from Bumetanide, I think they should look into Probenecid.
Personally I think Svetol is worth a try.
Coffee that has been extensively processed (just as we saw with cocoa) may not have the same chlorogenic acid content as the more gritty coffee used in the Balkans. Coffee consumption is actually associated with many neurological benefits, reducing the incidence of Parkinson’s and Alzheimer’s; the common mistake in research is the assumption that the effect must be from caffeine.











  
The health effects of decaffeinated Coffee
My eureka moment in this post was reading about gout and coffee and then decaffeinated coffee. 




So then it was a question of finding what in coffee could be the OAT3 inhibitor. At which point I found a very insightful paper that tells you everything, once you realise that:

Coffee = chlorogenic acids  = 1,3- and 1,5-dicaffeoylquinic acid


Five compounds, 1,3- and 1,5-dicaffeoylquinic acid, ginkgolic acids (15 : 1) and (17 : 1), and epicatechin, significantly inhibited hOAT3 transport under similar conditions

3.2. Inhibition of hOAT3 by Natural Anionic Compounds and Flavonoids

Human OAT3 expressing cells showed about 4-fold greater accumulation of ES as compared to background control cells ( versus  pmol mg 10  , resp.). Similar to hOAT1, hOAT3-mediated ES uptake was completely (>96% inhibition) blocked by probenecid (Figure 4). Five of the compounds, 1,3- and 1,5-dicaffeoylquinic acid, epicatechin, and ginkgolic acids (15 : 1) and (17 : 1), significantly inhibited hOAT3-mediated transport at 50-fold excess (Figure 4). 1,3-Dicaffeoylquinic acid and ginkgolic acid (17 : 1) exhibited 41% inhibition, while 30–35% reduction of hOAT3-mediated ES uptake was observed for 1,5-dicaffeoylquinic acid, epicatechin, and ginkgolic acid (15 : 1). Catechin, 18β-glycyrrhetinic acid, and ursolic acid failed to produce significant inhibition. Based on the level of inhibition observed, values for all of these compounds would be greater than 50 μM, much higher than clinically relevant concentrations (Table 1). Therefore, further dose-response studies were not performed.










Lay off the Lycopene?
Lycopene does the opposite of what we want. Too much lycopene may lower the effectiveness of a drug that is excreted via OAT3. 

2.29. Lycopene

Lycopene is a carotenoid pigment found in tomato [94]. Lycopene from dietary sources has been shown to reduce the risk of some chronic diseases including cancer and cardiovascular disorders [95]. The administration of lycopene significantly normalized the kidney function and antioxidant status of CSP-treated animals. Furthermore, lycopene also increased the expression of the organic anion and cation transporters (OAT and OCT, resp.) including OAT1, OAT3, OCT1, and OCT2 in the renal tissues [9698]. In addition, lycopene also decreased the renal efflux transporters (multidrug resistance-associated protein [MRP]-2 and MRP4) levels and induced Nrf2 activation, which activated the antioxidant defense system [99]. Furthermore, lycopene protected against CSP-induced renal injury by modulating proapoptotic Bax and antiapoptotic Bcl-2 expressions and enhancing heat shock protein (HSP) expression [97].

https://www.hindawi.com/journals/omcl/2016/4320374/                                                                                                                  

Aspirin
I actually started out this post by looking at what dose of aspirin might be effective in inhibiting OAT3.  We do know that Aspirin is indeed an OAT3 inhibitor.  


I did find the answer, but along the way you do end up having to look at uric acid. 
Uric acid is taken up by OAT1 and OAT3 from the blood and reabsorbed into renal tubular cells via URAT1 Uric acid is taken up by OAT1 and OAT3 from the blood and reabsorbed into renal tubular cells via URAT1Uric acid is taken up by OAT1 and OAT3 from the blood and reabsorbed into renal tubular cells via URAT1. 
Uricosuric drugs increase the excretion of uric acid in the urine, thus reducing the concentration of uric acid in blood plasma. 
In general, uricosuric drugs act on as urate transporter 1 (URAT1). URAT1 is the central mediator in the transport of uric acid from the kidney into the blood.  By their mechanism of action, some uricosurics (such as  probenecid) increase the blood plasma concentration of certain other drugs and their metabolic products  – this is their effect on OAT3.
Probenecid is a medication that increases uric acid excretion in the urine.
Atorvastatin is a so-called secondary uricosuric. High dose aspirin should also be called a secondary uricosuric.
Antiuricosuric drugs raise serum uric acid levels and lower urine uric acid levels. These drugs include all diuretics and low dose aspirin. 
Low dose aspirin inhibits OAT1 and OAT3 which reduces urate secretion, but high dose aspirin inhibits URAT1 and reduces urate re absorption. This is sometimes known as the biphasic effect.
So low dose aspirin will increase plasma uric acid, but high dose aspirin has the same effect as Probenecid, it lowers plasma uric acid levels.
So Aspirin and Probenecid both affect URAT1 and OAT3. 






At what dose is Aspirin an OAT3 inhibitor?
If we just want aspirin to inhibit OAT3 and not inhibit URAT1, what dose is effective? Fortunately this has been answered in the research. The typical low dose of aspirin (75mg) used preventatively in older people is OAT3 inhibiting, it raises plasma uric acid.  





Salicylate

Salicylic acid and its derivatives are the most prescribed analgesic, antipyretic, and anti-inflammatory agents. Salicylates have a “paradoxical effect” on the handling of uric acid by the kidney. The action of salicylates on uric acid excretion depends on the dose of salicylates. At doses of less than 2.5 g/day, salicylates cause the retention of uric acid by blocking the tubular secretion of uric acid, while at dose of higher than 3 g/day, they cause increased urinary excretion of uric acid [70]. Mini-dose aspirin, even at a dosage of 75 mg/day, caused a decrease in uric acid excretion and raised serum uric acid level [71]. It has been suggested that the “paradoxical effect” of salicylate can be explained by two modes of salicylate interaction with URAT1: (1) acting as an exchange substrate to facilitate uric acid reabsorption, and (2) acting as an inhibitor for uric acid reabsorption [72]. Low dose of salicylate interact with OAT1/OAT3, the uric acid secreters [73].

Low dose aspirin leads to decreased renal excretion of uric acid and raised serum uric acid levels, which can cause a gout attack in those predisposed to this condition.
High doses of aspirin lower serum uric acid concentration.

Reye’s Syndrome
In children aspirin is very rarely used because of the risk of Reye’s syndrome. Reye’s syndrome causes severe liver and brain damage. It is a type of severe mitochondrial failure that can occur after a viral infection like flu or chickenpox, but it almost only occurs when aspirin has been prescribed. Nobody knows for sure the exact mechanism of the disease.
So do not give aspirin to children with a viral infection.  We already know to avoid paracetamol/acetaminophen (Tylenol in the US) in babies/children and people with autism. Paracetamol/acetaminophen depletes the body’s key antioxidant GSH. 
If someone overdoses on Paracetamol/acetaminophen you give them a high dose of NAC to prevent death. 


Conclusion
Given how long it takes to develop new drugs, I think that improving the pharmokinetics of bumetanide is a pretty obvious thing to do. 
Diamox is an OAT3 inhibitor and our reader Agnieszka found it beneficial only when administered along with Bumetanide.
Strong coffee is an OAT3 inhibitor and this was found to enhance bumetanide by Petra’s son with Asperger’s.
Cinnamon which contains epicatechin, another OAT3 inhibitor, did seem to be helpful in Monty who also takes bumetanide.
I suspect Diamox may be the most potent OAT3 inhibitor of those three
The interesting OAT3 inhibitors seem to be:-

·        Probenecid

·        Low dose aspirin

·        Epicatechin (cocoa, cinnamon ..)

·        Chlorogenic acids (coffee and decaffeinated green coffee extracts) 

Cinnamon, high flavanol cocoa and indeed coffee (minus the caffeine) have numerous health benefits.
Note that Catechin has no effect on OAT3. EGCG was not tested but in other studies has been shown it does affect.



The logical next step would be to improve bumetanide transport across the blood brain barrier.