UA-45667900-1
Showing posts with label Rett Syndrome. Show all posts
Showing posts with label Rett Syndrome. Show all posts

Thursday, 14 August 2025

Home-made Liposomal EGCG — a cost effective therapy for Autism, Parkinson’s, and Alzheimer’s? Plus alternative antioxidants — Whey protein and Liposomal vitamin C


A $30 ultrasonic jewellery cleaner can be repurposed to make inexpensive liposomal supplements

 

Today’s post is really one for those who prefer not to use prescription drugs to treat autism, or those that are just unable to access them. It is also one our longtime reader Ling might regard as MacGyver-esque (from the TV series following the adventures of Angus MacGyver, a secret agent armed with remarkable scientific resourcefulness to solve any problem out in the field using any materials at hand).

It is about increasing the bioavailability of OTC supplements (EGCG in today’s case, but applicable to many others) to get closer to achieving their often elusive health benefits in autism.

There are some effective OTC autism therapies, but most are not. This is why repurposing existing prescription drugs is likely necessary.

 

Liposomal

One of the big things in the supplement world at the moment is to call products “liposomal” and triple the price. The theory is that a preparation contains the active drug/supplement inside very tiny, fat-like particles. This form is easier for the body to absorb and allows more drug/supplement to get to the target area of the body, such as the brain. Liposomal drugs may have fewer side effects and should, in theory, work better than other forms of the drug.

This fatty encapsulation helps protect the active compound from degradation in the digestive system and improves its absorption through the gut. It can also enhance delivery to target tissues (like the brain) because liposomes can sometimes cross biological barriers more easily.

This should mean higher effectiveness with lower doses and potentially fewer side effects compared to non-encapsulated forms.

 

If you are interested in the details:

https://en.wikipedia.org/wiki/Liposome

“A liposome is a small artificial vesicle, spherical in shape, having at least one lipid bilayer. Due to their hydrophobicity and/or hydrophilicity, biocompatibility, particle size and many other properties, liposomes can be used as drug delivery vehicles for administration of pharmaceutical drugs and nutrients, such as lipid nanoparticles in mRNA vaccines, and DNA vaccines. Liposomes can be prepared by disrupting biological membranes (such as by sonication).

Liposomes are most often composed of phospholipids, especially phosphatidylcholine, and cholesterol, but may also include other lipids, such as those found in egg and phosphatidylethanolamine, as long as they are compatible with lipid bilayer structure. A liposome design may employ surface ligands for attaching to desired cells or tissues.”

 

undefined

 

undefined

  

By making your own liposomal supplements you will save a lot of money, compared to commercial ones and have access to an undegraded product. If you customize the recipe/ingredients thoughtfully, and carefully control the processing, the result might replicate some of the benefits seen in university studies. You might wonder why compounding pharmacies are not already doing this - maybe some are.

You can pretty much buy everything you need on Amazon. Once you have figured out your ingredients and decided how big a batch to make, it is no more complex than baking a cake.

 

Liposomal vitamin C and whey protein as therapies for oxidative stress

Oxidative stress is a core feature of most autism, particularly in the early years, and a feature of aging for everyone. Vitamin C is a natural antioxidant, but it is a water soluble vitamin that your body automatically regulates and excretes via urine. If you take mega-doses of a standard supplement it just goes down the toilet, it does not reach the bloodstream.

Intravenous vitamin C causes a large increase in levels in the blood. This can be used to treat sepsis and even mast cell activation syndrome (MCAS). It has potential in oncology (cancer treatment) because at high concentrations, vitamin C can act as a pro-oxidant, generating hydrogen peroxide that is selectively toxic to tumor cells.  

It has also been used for Ehlers-Danlos syndrome, fibromyalgia and other conditions

Some practitioners consider IV vitamin C for autism because of its: 

  • Antioxidant effects – reducing oxidative stress, which is elevated in many children with autism.
  • Anti-inflammatory properties – calming neuroinflammation and microglial activation.
  • Support for neurotransmitter synthesis – vitamin C is a cofactor in dopamine and norepinephrine production.
  • Possible mast cell stabilization – relevant in children with autism and comorbid mast cell activation syndrome (MCAS).
  • Histamine degradation support – helps recycle tetrahydrobiopterin (BH4), indirectly involved in histamine metabolism.

 

It has been found that liposomal vitamin C can achieve levels in the blood somewhere in between IV-vitamin C and regular vitamin C by food or supplements. 

High levels of vitamin C can cause side effects such as kidney stones.

Liposomal vitamin C is better tolerated than very high doses of standard vitamin C. It looks like things are likely to start going wrong above 3,000mg a day of liposomal.

Healthy people just need a good diet. If they have a poor diet then take a multivitamin.

Liposomal or IV therapy is only for people with real health issues.

People with MCAS plus autism certainly do have health issues.

Ehlers–Danlos syndrome (and milder subclinical versions) is linked to MCAS, ADHD, autism and Tourette’s. So that is another group to consider.

Fibromyalgia was put forward (by me) as a step towards autism in some females, in subsequent levels of their family tree.

So overall the idea of liposomal vitamin C has much more merit than a natural sceptic would have first thought. (There are loads of YouTube videos of people doing this, and likely many did not really need it.)

 

Whey protein as an antioxidant 

This topic was recently highlighted by our reader Stephen and it naturally fits into this post.

Back in 2013 when I was developing my son’s therapy I had to choose between NAC and whey protein to boost glutathione (GSH), the body’s key antioxidant. I chose NAC.

Here is a great paper to support the use of whey protein.

 

Improving Antioxidant Capacity in Children With Autism: A Randomized, Double-Blind Controlled Study With Cysteine-Rich Whey Protein 

Previous studies indicate that children with autism spectrum disorder (ASD) have lower levels of glutathione. Nutritional interventions aim to increase glutathione levels suggest a positive effect on ASD behaviors, but findings are mixed or non-significant. A commercially available nutritional supplement comprising a cysteine-rich whey protein isolate (CRWP), a potent precursor of glutathione, was previously found to be safe and effective at raising glutathione in several conditions associated with low antioxidant capacity. Therefore, we investigated the effectiveness of a 90-day CRWP intervention in children with ASD and examined whether intracellular reduced and oxidized glutathione improvements correlated with behavioral changes. We enrolled 46 (of 81 screened) 3-5-year-old preschool children with confirmed ASD. Using a double-blind, randomized, placebo-controlled design, we evaluated the effectiveness of daily CRWP (powder form: 0.5 g/kg for children <20 kg or a 10-g dose for those >20 kg), compared with placebo (rice protein mimicking the protein load in the intervention group), on glutathione levels and ASD behaviors assessed using different behavioral scales such as Childhood Autism Rated Scale, Preschool Language Scale, Social Communication Questionnaire, Childhood Behavioral Checklist and the parent-rated Vineland Adaptive Behavior Scale, 2nd edition (VABS-II). Forty children (CRWP, 21; placebo, 19) completed the 90-day treatment period. Improvements observed in some behavioral scales were comparable. However, the VABS-II behavioral assessment, demonstrated significant changes only in children receiving CRWP compared to those observed in the placebo group in the composite score (effect size 0.98; 95% confidence intervals 1.42-4.02; p = 0.03). Further, several VABS-II domain scores such as adaptive behavior (p = 0.03), socialization (p = 0.03), maladaptive behavior (p = 0.04) and internalizing behavior (p = 0.02) also indicated significant changes. Children assigned to the CRWP group showed significant increases in glutathione levels (p = 0.04) compared to those in the placebo group. A subanalysis of the VABS-II scale results comparing responders (>1 SD change from baseline to follow up) and non-responders in the CRWP group identified older age and higher levels of total and reduced glutathione as factors associated with a response. CRWP nutritional intervention in children with ASD significantly improved both glutathione levels and some behaviors associated with ASD. Further studies are needed to confirm these results.

 

This study used a special commercial product called Immunocal, a cysteine-rich whey protein isolate (CRWP) that serves as a potent glutathione precursor.

There are less expensive alternatives to Immunocal that still offer high-quality, undenatured, cysteine-rich whey protein, especially if your goal is to support glutathione production without paying premium prices. These products are typically marketed as cold-processed, non-denatured whey protein concentrates or isolates, and some are even made from the same raw material sources as Immunocal.

If you want to further increase absorption you can even make a liposomal version of a cysteine-rich whey protein!! 

Regular body builders’ whey protein is great to help build muscles and to maintain muscle mass in seniors, but it is not the ideal source of cysteine. It has degraded during the production process, that why there are fancy ones available.

I think Stephen would indeed be well advised to add a scoop of cysteine-rich whey protein isolate (CRWP) to his sons’ diets. It should have a more prolonged effect than NAC. For young children with autism NAC really needs to be given 3-4 times a day.

You can have too much cysteine. You do not need high dose of both NAC and CRWP.

 

Back to liposomal EGCG

If you read the reviews many people find commercial liposomal supplements no more effective than the much cheaper, regular ones. I wonder why. Most likely they were not well formulated, or they degraded by the time they were used. These products are not heat or light stable.

Many manufactured products like fish oil supplements no longer maintain the health benefit of the genuine article (fish, in this case). This is because the product degraded and sometimes can even have a negative behavioral effect. 

 

Many healthy natural products like catechins or curcuma have very low bioavailability

There is a long list of healthy products that should be therapeutic in autism including:

·        Green tea catechins like EGCG

·        Turmeric/Curcuma

·        Resveratrol

·        Cocoa

·        Many herbs (sage, oregano, rosemary, Bacopa monnieri, ginseng, lions mane, etc)

They generally have very low bioavailability and so they work great in the lab, but much less so in humans; unless you consume very large amounts, for example turmeric in an Indian diet.

 

EGCG

I have written about EGCG in the past and have highlighted the research from Spain, more specifically from the beautiful city of Barcelona (just avoid visiting during the peak summer months). The research showed a benefit in Fragile X and Rett syndrome. As usual, no customized intervention has yet been brought to the market.

https://www.epiphanyasd.com/search/label/EGCG?max-results=20


Yet another study showing the potential benefit of EGCG, was published recently, this time in Pakistan.

 

Cross-linking catechins with neuro-regulatory model for autism spectrum disorder: A management in rats’ experiment 

We found that BDNF levels returned to normal levels within the groups who received Catechins treatment at III, IV, and V concentrations (compared to Group II), showing Catechins could potentially treat autism-like symptoms. The BDNF values measured in nano-grams per millilitre were Group I (13.1±0.3), followed by Group II (5.1±0.2) and Group III (9.8±0.3), Group IV (8.0±0.3), and then Group V (10.1±0.3). The BDNF concentration measured in Groups III, IV and V surpassed the BDNF level of Group II (PPA-induced) per results from a post-hoc Tukey's test at p 

Catechins successfully decreased neuroinflammatory markers throughout the brain and establish protective brain mechanisms that potentially improve ASD-associated behavioral symptoms. Rats given 100, 200, and 400 mg/kg of various catechins showed increases in BDNF levels of up to 75%, 61%, and 77%, respectively, as opposed to only 39% for rats that received no treatment. The findings of a study suggested a continuous and expandable neuroprotective effect based on dose strength. The experimental results demonstrated that in ASD models, catechins offer a potent and dosage-dependent defense against neuroinflammatory injuries.

  



This study confirms that epigallocatechin gallate (EGCG), among catechins, shows great promise for managing neuroinflammation in ASD patients. The results indicate that catechins deliver substantial reductions in neuroinflammatory markers, as they serve as protective element that improves behavioral and cognitive manifestations of ASD. Future investigations must explore mechanisms of effect and find best-use dosages for catechins while establishing their safety and lasting effect durations.

 

Then I came across this paper where the university made their own liposomal version of EGCG and tried it on their model of Parkinsons’ disease. It also worked very well. Autism is not Parkinsons’ but both conditions feature activated microglia, the brain’s immune cells that are also tasked with synaptic pruning housekeeping duties.

 

Epigallocatechin-3-Gallate-Loaded Liposomes Favor Anti-Inflammation of Microglia Cells and Promote Neuroprotection

Microglia-mediated neuroinflammation is recognized to mainly contribute to the progression of neurodegenerative diseases. Epigallocatechin-3-gallate (EGCG), known as a natural antioxidant in green tea, can inhibit microglia-mediated inflammation and protect neurons but has disadvantages such as high instability and low bioavailability. We developed an EGCG liposomal formulation to improve its bioavailability and evaluated the neuroprotective activity in in vitro and in vivo neuroinflammation models. EGCG-loaded liposomes have been prepared from phosphatidylcholine (PC) or phosphatidylserine (PS) coated with or without vitamin E (VE) by hydration and membrane extrusion method. The anti-inflammatory effect has been evaluated against lipopolysaccharide (LPS)-induced BV-2 microglial cells activation and the inflammation in the substantia nigra of Sprague Dawley rats. In the cellular inflammation model, murine BV-2 microglial cells changed their morphology from normal spheroid to activated spindle shape after 24 h of induction of LPS. In the in vitro free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, EGCG scavenged 80% of DPPH within 3 min. EGCG-loaded liposomes could be phagocytized by BV-2 cells after 1 h of cell culture from cell uptake experiments. EGCG-loaded liposomes improved the production of BV-2 microglia-derived nitric oxide and TNF-α following LPS. In the in vivo Parkinsonian syndrome rat model, simultaneous intra-nigral injection of EGCG-loaded liposomes attenuated LPS-induced pro-inflammatory cytokines and restored motor impairment. We demonstrated that EGCG-loaded liposomes exert a neuroprotective effect by modulating microglia activation. EGCG extracted from green tea and loaded liposomes could be a valuable candidate for disease-modifying therapy for Parkinson’s disease (PD).

 

Looks great, but you cannot buy their product. It then appeared that people are already making liposomal supplements at home.

Dig a little deeper to see what other clever ideas exist in the university research world that might make DIY versions better. 

 

Liposomal Formulations for an Efficient Encapsulation of Epigallocatechin-3-Gallate: An In-Silico/Experimental Approach

As a part of research project aimed to optimize antioxidant delivery, here we studied the influence of both salts and lipid matrix composition on the interaction of epigallocatechin-3-gallate (EGCG) with bilayer leaflets. Thus, we combined in silico and experimental methods to study the ability of neutral and anionic vesicles to encapsulate EGCG in the presence of Ca2+ and Mg2+ divalent salts. Experimental and in silico results show a very high correlation, thus confirming the efficiency of the developed methodology. In particular, we found out that the presence of calcium ions hinders the insertion of EGCG in the liposome bilayer in both neutral and anionic systems. On the contrary, the presence of MgCl2 improves the insertion degree of EGCG molecules respect to the liposomes without divalent salts. The best and most efficient salt concentration is that corresponding to a 5:1 molar ratio between Mg2+ and EGCG, in both neutral and anionic vesicles. Concerning the lipid matrix composition, the anionic one results in better promotion of the catechin insertion within the bilayer since experimentally we achieved 100% EGCG encapsulation in the lipid carrier in the presence of a 5:1 molar ratio of magnesium. Thus, the combination of this anionic liposomal formulation with magnesium chloride, avoids time-consuming separation steps of unentrapped active principle and appears particularly suitable for EGCG delivery applications.

 

The Mozafari method for Liposomal delivery

The latest methods used in universities to make liposomal products cannot be entirely replicated at home, but there is a well-known method developed by Dr Mohammad Mozafari that has been proved to increase bioavailability 2 to 8 times. The Mozafari method is used today by biohackers at home. Often they seem to skip some important steps.

We can fine tune his method, for example by noting the research showing that magnesium ions can help stabilize the liposomes and improve encapsulation of EGCG. Calcium ions have a very negative effect and so make sure no calcium (for example, from hard water) enters the process. YouTubers just use tap water. So use high-quality deionized (DI) water and add Magnesium Chloride (MgCl₂).

Anionic liposomes (negatively charged phospholipids) promote better EGCG insertion compared to neutral liposomes. With Mg²⁺, anionic liposomes reached 100% encapsulation efficiency experimentally. So it was actually perfect.

Magnesium chloride (MgCl₂) at about a 5:1 molar ratio relative to EGCG

(Example: for 500 mg EGCG ≈ 1.1 mmol, add ~5.5 mmol MgCl₂ — roughly 670 mg MgCl₂·6H₂O)

Both pH and temperature control are important and seem to get ignored by YouTubers.

Choose the right lipid. Here are the choices:

Most DIYers are using Lecithin (sunflower or soy), which contains phosphatidylcholine (PC), plus other substances you do not want. It is cheaper than pure PC.

If you are making liposomal vitamin C, glutathione, DHA or EGCG for therapeutic use (e.g., autism, MCAS, oxidative stress), pure PC gives superior performance.

Lecithin is zwitterionic, meaning it contains both positive and negative charges, but is overall electrically neutral. This dual nature is what makes lecithin perfect for encapsulating both water-soluble (like vitamin C) and fat-soluble (like curcumin) compounds in liposomes.

For closer to University-grade work we need to look at pure chemicals.

·        Phosphatidylcholine (PC) — neutral

·        Phosphatidylserine (PS) — anionic (negative charged)

·        CHEMS (Cholesteryl Hemisuccinate), a negatively charged cholesterol derivative.

·        Cholesterol

 

Component             Role  

PC                               Bilayer structure & fluidity         

PS                               Anionic charge, Mg²⁺ interaction          

Cholesterol               Stabilization (optional)    

CHEMS                      Additional anionic charge (optional)

 

Phosphatidylserine (PS) is itself therapeutic

PS naturally concentrates in the brain, especially in neuronal membranes.

It is known to support memory, attention, synaptic function, and neuroplasticity — ideal for neurodegenerative and developmental conditions.

PS is negatively charged (anionic), which helps form stable liposomes and can improve encapsulation of positively charged or hydrophilic molecules like EGCG.

PS has functional activity, beyond just being a carrier, PS itself may synergize with EGCG and other cognitive-enhancing compounds.

Adding cholesterol makes the liposome less leaky and more resistant to degradation. Without cholesterol, liposomes are more prone to oxidation, fusion, or breakdown over time

  

Example for 2 g Total Lipids:

Lipid Component

Weight (grams)

Percentage

PC

1.2 g

60%

PS

0.4 g

20%

Cholesterol

0.4 g

20%

 

  • PC provides a stable bilayer and good liposome formation.
  • PS introduces a negative charge that enhances electrostatic interaction with Mg²⁺ and EGCG.
  • Cholesterol improves membrane rigidity and stability, helping prevent leakage.
  • You can adjust cholesterol slightly depending on how rigid you want the membrane.
  • Maintain MgCl₂ at ~5:1 molar ratio to EGCG in the aqueous buffer for optimal encapsulation, as per references.

EGCG is highly oxidation-sensitive.

Both vitamin C (ascorbic acid) and vitamin E (tocopherol) protect:

·        the lipids in the liposome from peroxidation,

·        the EGCG itself from degradation.

So it is wise to add both vitamin C and E.

  • Vitamin E is lipid-soluble and embeds in the bilayer.
  • Vitamin C is water-soluble and protects the aqueous core.

 

Here is the home version.

 

 

Equipment

  • Glass beaker or jar
  • Ultrasonic cleaner (sold to clean jewellery)
  • Stirring rod
  • pH strips or meter
  • Dark glass storage bottle

 

Method

1.     Mix Vitamin E with PS

o    Combine PS powder and vitamin E oil or powder thoroughly in a small container.

2.     Prepare aqueous phase

o    Dissolve EGCG powder and magnesium chloride in ~20 mL PBS or distilled water with buffer salts.

o    Add vitamin C to this aqueous solution last and stir gently until dissolved.

3.     Hydrate lipids

o    Slowly add the aqueous phase (EGCG + MgCl₂ + vitamin C) to the PS + vitamin E mix.

o    Stir or vortex gently to disperse.

4.     Sonicate

o    Place the mixture in an ultrasonic cleaner bath for 20–30 minutes, stirring occasionally.

o    Solution should become milky/opalescent, indicating liposome formation.

 

How to Use Ultrasonic Cleaner for Liposomal EGCG

1.     Prepare your liposome suspension in a suitable sealed container—usually a small glass vial or bottle with a tight lid (e.g., amber glass bottle or glass vial).

2.     Fill the ultrasonic cleaner tank with clean water—enough so that when you place your container in it, the water level reaches just below the lid or about 2/3 up the container’s height. The water must not overflow into your liposome container

3.     Place your sealed bottle/vial into the ultrasonic bath, making sure it sits upright and stable.

4.     Turn on the ultrasonic cleaner for the recommended at medium power.

5.     During the process, keep an eye on the temperature—if the water or sample gets too warm (>40°C), pause and let it cool, since heat will degrade EGCG.

6.     After sonication, remove the bottle and store the liposomal EGCG in a dark, refrigerated place.

 

Important Tips

  • Use sealed containers to avoid contamination or water ingress.
  • Never put the liposomal suspension directly into the ultrasonic cleaner’s water bath.
  • If your ultrasonic cleaner has a temperature control or timer, use those settings to protect the sample.
  • Clean the ultrasonic tank well before and after use.


The final product will be stable for 7 days in the fridge.

You can freeze portion sized doses in a silicone ice cube tray. Later store in the freezer in a zip lock bag for 2-3 months. Defrost in the fridge, one by one, as you need it.

Keeping the temperature below 40°C is essential when sonifying delicate compounds like EGCG, vitamin C, and phospholipids (especially phosphatidylserine). They degrade or oxidize easily when exposed to excessive heat.

 

 1. Use a Cold Water Bath

  • Fill the ultrasonic cleaner with cold water (4–10°C).
  • Add ice cubes to keep it cold.
  • Replenish ice as needed during sonication.

 

2. Monitor Temperature

  • Use a probe thermometer or an infrared laser thermometer.
  • Check the temperature of your sample, not just the water bath.

 

Ultrasonic waves create cavitation — rapid formation and collapse of microbubbles — which:

  • Generates localized heat (tiny hot spots in the solution)
  • Transfers energy into the liquid, raising the overall temperature gradually
  • Can increase your solution temperature from room temp to 50–60°C in 10–15 minutes if not managed

Even if the water bath feels lukewarm, the inside of your beaker can be much hotter, especially in the center.

 

 Sensitive Ingredients at Risk

  • EGCG starts to degrade above ~40°C
  • Phospholipids can oxidize or become unstable
  • Vitamin C rapidly degrades in heat and light

 

Best Practices to Avoid Overheating

Tip

Why

Use an ice-cold bath

Keeps temp under control during sonication

Sonicate in short bursts (30s ON, 30s OFF)

Prevents buildup of heat

Stir gently before and after sonication

Helps distribute heat and emulsify

Monitor temperature regularly

Keeps you in the safe zone (under 40°C)

Work with small batches (≤100 mL)

Easier to cool and control

 

Sonication is the process of using high-frequency sound waves—usually ultrasound—to agitate particles in a liquid. In making liposomes, sonication helps break down large lipid aggregates into smaller, uniform liposomes by creating tiny bubbles that collapse and generate energy, mixing and dispersing the components more thoroughly.

In simpler terms, sonication is like using sound waves to gently shake and break up the mixture so that the fat-like particles (liposomes) form smaller, more consistent droplets, which can improve how well the active ingredient (like EGCG) gets absorbed by your body.

  

Conclusion

Immunocal, a cysteine-rich whey protein isolate (CRWP) does show a benefit in autism. It is an OTC product that is sold online.

EGCG is the most abundant catechin in green tea.  When taken orally, EGCG has poor absorption even at daily intake equivalent to 12 cups of green tea.

EGCG does show merit in autism research studies, but to be effective in humans the bioavailability needs to be improved. Using liposomes to encase the EGCG is a promising approach.

Will the method proposed in this post be effective?

I asked Gemini AI to comment on the method and it replied: 

"The EGCG method you described is a fantastic example of a DIY approach that is grounded in sound scientific principles. By using specific lipids, optimizing the formulation with magnesium, and strictly controlling the process, it goes far beyond the simplistic and often ineffective methods seen online.

While it won't produce a pharmaceutical-grade product, it is highly likely to create a solution that contains a significant number of genuine, stable, and correctly sized liposomes. This makes it far more likely to be an effective delivery system than the typical DIY liposomal vitamin C, which is often just an unverified emulsion."

Some people do grow their own broccoli sprouts to make sulforaphane, others grow wheat sprouts for spermidine. Some people grow their own probiotic bacteria. Making tumeric balls is a simple way to get the benefits of tumeric. There are many home-made options, and I think the parent almost certainly benefits. 

You would think that some enterprising pharmacist in Barcelona would start producing small batches of liposomal EGCG, using research grade equipment. I think Rett syndrome and Fragile X syndrome parents would buy it. Not to mention those who have parents diagnosed with Parkinson's or Alzheimer's.





   

  

Friday, 18 April 2025

Understanding how and why regression occurs in young children with either polygenic or single gene autism

 

Just ask Peter


I see that in the US, RFK Jr has told the President that he will figure out the cause of the autism epidemic by September 2025. Well, some people are saying that will be impossible. The facts are actually already there in the research, if you care to look for them. It might have been better to give the task to Elon Musk and give him 6 days, rather than RFK 6 months.

Today, I thought it would be interesting to address the issue of how apparently typically developing young toddlers can regress into autism. This post was written at Musk++ speed.

 

What is autism?

Autism is a complex neurodevelopmental condition that can manifest in diverse ways. One particularly perplexing phenomenon is regression—the loss of previously acquired skills such as speech, social interaction, or motor abilities. Regression typically occurs between 18 months and 5 years of age and can be observed in both polygenic (several genes affected) and monogenic (single gene) forms of autism. Understanding why and how this occurs requires examining the interplay between genetic, metabolic, and environmental factors during critical periods of early brain development.

 

Key Processes in Early Brain Development


Synaptic Pruning and Plasticity

During early childhood, the brain refines its neural connections through a process known as synaptic pruning, where unused or weaker synapses are eliminated, and stronger ones are reinforced. This process is essential for optimizing neural circuits but is highly vulnerable to dysregulation. In conditions like Rett syndrome, caused by mutations in the MECP2 gene, or in polygenic autism, excessive or insufficient pruning can disrupt circuits necessary for maintaining skills. 

Myelination

Myelination—the coating of axons with myelin to improve signal transmission—occurs rapidly during this period. Disruptions in myelination due to metabolic dysfunctions or mitochondrial impairments can impair communication between brain regions, potentially contributing to skill regression. 

Critical Periods of Neuroplasticity

Early childhood represents a window of heightened neuroplasticity, where the brain’s capacity to adapt and rewire is greatest. This sensitivity allows for rapid learning but also renders the brain more susceptible to adverse influences, such as inflammation, energy deficits, or genetic mutations. Dysregulation of plasticity mechanisms can lead to maladaptive changes, erasing previously acquired skills. 

Mitochondrial Dysfunction: A Key Factor

Mitochondrial dysfunction has been increasingly implicated in autism regression. The brain’s energy demands are extraordinarily high during early childhood, consuming up to 50% of the body’s total energy to support growth and neural connectivity. Mitochondrial deficits, whether due to genetic mutations or environmental stressors, can cause energy crises that disrupt critical developmental processes. Dr. Richard Kelley from Johns Hopkins has highlighted mitochondrial dysfunction as a near-universal factor in cases of regression.

Kelley proposed the diagnosis AMD, autism secondary to mitochondrial disease.

Evaluation and Treatment of Patients with Autism and Mitochondrial Disease 

Unfortunately, there are many factors other than mitochondrial dysfunction that cause regression into autism. This point has been highlighted by many readers of this blog, based on their own experiences.

 

Age-Specific Vulnerability

 

Why Regression Occurs Between 18 Months and 5 Years

This period is marked by rapid acquisition of key developmental milestones, including speech, language, and social skills. These abilities rely on the integrity of neural circuits that are still maturing. Regression is more apparent when these nascent circuits are disrupted, as the skills they support are not yet deeply embedded.

  • Before 18 Months: Skills like speech or social interaction are not fully developed, making regression less visible.
  • After 5 Years: Neural circuits and skills stabilize, and the brain becomes less susceptible to environmental and metabolic disruptions.

 

The Role of Synaptic and Circuit Stability

Regression is less likely in older children or adults because the brain has completed most of its synaptic pruning and has established more stable circuits. By this time, skills are less reliant on vulnerable developmental processes.

 

Environmental and Epigenetic Triggers

During early childhood, environmental factors such as infections, stress, or dietary deficiencies can significantly influence gene expression and neurodevelopment. In genetically predisposed children, these triggers can lead to neuroinflammation or exacerbate mitochondrial dysfunction, further increasing the risk of regression.

 

Polygenic vs. Monogenic Autism Regression


  • Monogenic Autism: In single-gene disorders like Rett syndrome or Fragile X syndrome, genetic mutations directly impair brain development and function. Regression in these cases is often linked to disruptions in genes crucial for synaptic maintenance and neuroplasticity.

  • Polygenic Autism: Regression in polygenic autism likely results from a combination of genetic predispositions interacting with environmental and metabolic stressors. The cumulative effect of multiple risk genes can dysregulate processes like synaptic pruning, energy metabolism, or immune responses.

 

Regression up the age of 10 is rare, but possible

Childhood Disintegrative Disorder (CDD), also known as Heller's syndrome, is a rare condition characterized by significant regression in developmental skills after at least two years of apparently typical development. It is classified as a part of the autism spectrum disorders,  but is distinct due to its dramatic loss of previously acquired skills, typically between the ages of 3 and 10 years.

CDD is often considered a more severe form of regressive autism because of the profound and widespread nature of the regression:

  • Loss of language, social skills, motor skills, and adaptive behaviors (e.g., toileting).
  • Behavioral changes often include anxiety, irritability, and stereotypic behaviors resembling autism.

However, its exact cause remains poorly understood, with current hypotheses focusing on both polygenic inheritance and mitochondrial dysfunction.

CDD is a spectrum with a wide range of outcomes. While it is often associated with severe and permanent disability, some children can regain partial skills with appropriate interventions. Recovery varies greatly, and prognosis depends on factors such as the timing and extent of regression, the underlying cause, and the availability of tailored therapeutic approaches.


Simple conclusion

Regression in autism is a multifaceted phenomenon that occurs during a critical window of early childhood when the brain is rapidly developing and highly sensitive to disruption. Key processes such as synaptic pruning, myelination, and neuroplasticity are particularly vulnerable to genetic, metabolic, and environmental influences. Mitochondrial dysfunction emerges as a central factor in many cases, highlighting the need for a deeper understanding of energy metabolism in neurodevelopmental disorders. While the mechanisms differ between polygenic and monogenic autism, both forms underscore the importance of this critical developmental window and the need for timely interventions to support skill retention and neurodevelopment.



 

How Mitochondrial Dysfunction Causes Regression

  1. Energy Crisis in the Brain
    • The brain is highly energy-dependent, consuming a significant portion of the body’s ATP (adenosine triphosphate), produced by mitochondria.
    • Skills like speech and motor function rely on the continuous and efficient operation of neural networks. If mitochondria cannot meet the energy demands, these networks may fail to maintain function, leading to regression.
  2. Critical Periods of High Energy Demand
    • Developmental regression often occurs during phases of rapid brain growth and synaptic pruning (e.g., 18 months to 3 years in children with autism).
    • During these periods, mitochondrial dysfunction can result in:
      • Depletion of neural energy reserves
      • Impaired synaptic plasticity and signaling
      • Loss of functional neural networks
  3. Vulnerability to Stressors
    • Children with mitochondrial dysfunction are more susceptible to stressors such as infections, fevers, or environmental toxins, which can further impair mitochondrial function and precipitate regression.
  4. Oxidative Stress and Neuroinflammation
    • Dysfunctional mitochondria generate excessive reactive oxygen species (ROS), leading to oxidative stress and damage to cellular components, including neurons.
    • This can exacerbate inflammation in the brain and contribute to neural circuit disruptions.

 

Example of single gene autisms featuring regression 


Rett Syndrome Overview

  • Rett syndrome is caused by mutations in the MECP2 gene, which encodes the methyl-CpG-binding protein 2. This protein is critical for regulating gene expression, particularly in neurons.
  • MECP2 acts as a transcriptional regulator, ensuring that certain genes are activated or repressed as needed during development.

Why Development Seems Normal Initially

  1. Early Brain Development
    • During early development, processes like neuronal proliferation (growth in the number of neurons) and initial migration of neurons to their proper locations occur.
    • These stages of brain development are not as heavily dependent on MECP2 function, which primarily regulates post-mitotic (non-dividing) neurons.
    • Other compensatory mechanisms in early life might temporarily mask the effects of MECP2 dysfunction.
  2. Low Demand for Synaptic Plasticity
    • In the first year of life, the brain focuses on basic structural growth rather than complex synaptic connections.
    • The regulatory role of MECP2 in maintaining synaptic plasticity becomes more critical as the child begins to acquire higher cognitive and motor functions.

 

Why Regression Occurs

  1. Synaptic Maturation and Plasticity
    • Around 18 months, the brain enters a critical phase of synaptic pruning and circuit refinement, where unnecessary connections are removed, and essential ones are strengthened.
    • MECP2 dysfunction leads to impaired synaptic maturation, resulting in disrupted communication between neurons.
    • This manifests as the loss of previously acquired skills, such as speech, purposeful hand use, and motor coordination.
  2. Epigenetic Dysregulation
    • MECP2 is a key player in epigenetic regulation, meaning it modifies how genes are expressed without changing the DNA sequence.
    • During this developmental window, MECP2 is critical for the fine-tuning of neural circuits through epigenetic mechanisms. A defective MECP2 protein disrupts these processes, leading to neurodevelopmental regression.
  3. Imbalance in Excitation and Inhibition
    • MECP2 mutations often result in an imbalance between excitatory and inhibitory signaling in the brain, leading to abnormal neural activity patterns.
    • This imbalance might not become evident until the neural network demands increase during the toddler years.

 

Why the Timing?

  • Critical Periods: Brain development occurs in stages with "critical periods" where specific genes and proteins are essential. MECP2 dysfunction becomes evident when the brain transitions from basic growth to complex functional organization.
  • Developmental Threshold: The early compensatory mechanisms or residual MECP2 activity may be sufficient for initial growth but fail as demands on the neural system intensify.

 

Implications for Treatment

  • Early Interventions: Therapies like MECP2 gene therapy, neuroplasticity-enhancing interventions, and symptom management strategies aim to prevent or reduce the impact of regression.
  • Critical Timing: Intervening before or during the regression window may maximize the potential for preserving neural function.

This pattern of normal early development followed by regression highlights the dynamic and stage-specific roles that single-gene mutations can play in neurodevelopment.

  

Contrast Pitt-Hopkins syndrome vs Rett syndrome

Pitt-Hopkins syndrome and Rett syndrome are both monogenic disorders associated with autism-like features, but they differ significantly in their developmental trajectories and underlying mechanisms.

Newborns with Pitt-Hopkins syndrome often appear physically normal, with no distinct features at birth to suggest a genetic syndrome. Birth weight and head circumference may fall within normal ranges. Developmental delays, especially in motor skills, usually become noticeable during the first year of life. Hypotonia (low muscle tone) may be evident early, affecting feeding and physical development. Pitt-Hopkins syndrome typically does not feature a dramatic loss of previously acquired skills (regression) as seen in conditions like Rett syndrome. Instead, Pitt-Hopkins is more characterized by delayed acquisition of developmental milestones rather than a significant loss of skills once they are gained.

 

Pitt-Hopkins Syndrome (TCF4 Mutation)

  • Developmental Course: Children with Pitt-Hopkins syndrome typically show early developmental delays, particularly in motor and cognitive domains. While there may be some regression, it is less abrupt and pronounced compared to Rett syndrome.
  • Mechanism: Mutations in the TCF4 gene disrupt transcriptional regulation critical for neuronal differentiation and synaptic formation. This leads to global developmental delays from early infancy, with limitations in skill acquisition rather than significant loss of previously acquired abilities.
  • Features: Severe intellectual disability, absent or minimal speech, and distinctive facial features are characteristic. Respiratory irregularities and motor impairments are common.

Rett Syndrome (MECP2 Mutation)

  • Developmental Course: Girls with Rett syndrome often develop typically for the first 6 to 18 months before experiencing a dramatic regression. Skills such as speech, purposeful hand use, and social engagement are lost, often accompanied by the onset of stereotypic hand movements.
  • Mechanism: MECP2 mutations impair the regulation of gene expression involved in synaptic maintenance and neuroplasticity. This results in the progressive loss of neuronal function and connectivity, particularly during the sensitive period of early childhood.
  • Features: Rett syndrome includes severe intellectual disability, motor impairments, seizures, and breathing abnormalities, along with hallmark hand-wringing behaviors.

 

Polygenic regressive autism

In polygenic regressive autism, the regression is believed to result from a complex interplay of multiple genetic, environmental, and metabolic factors. Unlike monogenic autism, where a single gene mutation explains most of the phenotype (e.g., Rett syndrome), polygenic regressive autism arises from the combined effects of multiple genetic variants, each contributing a small risk, along with external triggers

 

1. Key Features of Regression in Polygenic Autism

  • Loss of previously acquired skills (e.g., speech, social interaction, motor abilities) after a period of typical development.
  • Often occurs between 18 and 36 months, a critical period for brain development.
  • Associated with a subset of autism cases, possibly more linked to environmental sensitivity or metabolic vulnerabilities.

 

2. Contributing Factors

 

Genetic Susceptibility

  • Multiple Genes Involved: Variants in genes related to synaptic function, neural plasticity, and energy metabolism (e.g., SHANK3, SLC6A4, SCN2A) may predispose the brain to functional impairments.
  • Epistasis: Interactions between these genes amplify the risk of neural circuit disruptions.

Epistasis is a Greek word for stoppage and in science when you want to sound clever, you often pick a Greek word, so only Greeks will understand it.

Our Greek reader Konstantinos is currently dealing with the implications of epistasis.

Epistasis is a precise term used in genetics. It refers to specific interactions between genes where one gene modifies, suppresses, or enhances the effect of another gene. This is a technical concept that has well-defined implications in studies of inheritance and molecular biology. For example:

  • Gene A masks the effect of Gene B.

  • Gene C enhances the effect of Gene D.


Mitochondrial Dysfunction

  • Energy Deficits: The developing brain has high energy demands, especially during synaptic pruning and circuit refinement. If mitochondria are inefficient, neural circuits may fail.
  • Triggered by Stress: Stressors like fever, infections, or environmental toxins may overwhelm already fragile mitochondrial function, causing regression.

Excitatory-Inhibitory Imbalance

  • Synaptic Dysregulation: Variants in genes affecting GABAergic (inhibitory) or glutamatergic (excitatory) signaling can lead to circuit over or under-activation, resulting in regression.
  • Neuroinflammation: Chronic inflammation may exacerbate synaptic dysfunction, further disrupting brain networks.

Immune and Neuroinflammatory Factors

  • Maternal Immune Activation (MIA): In utero exposure to maternal immune challenges may predispose the child to neuroinflammation, which could be triggered later in life.
  • Postnatal Immune Dysregulation: Autoimmune or inflammatory responses (e.g., microglial activation) may interfere with neural connectivity.

Epigenetic and Environmental Triggers

  • Epigenetic Modifications: Environmental factors, such as nutrition, infections, or toxins, can influence the expression of autism-related genes.
  • Gut-Brain Axis: Dysbiosis or gut inflammation may exacerbate systemic inflammation, impacting brain function.

 

3. What Happens Neurologically?

Synaptic Dysfunction

  • Dendritic Spine Abnormalities: Regression is often associated with a loss of dendritic spines, impairing synaptic connections.
  • Neuronal Circuitry Breakdown: Brain regions critical for speech, social cognition, and motor skills may lose functional connectivity.

Myelination and Axonal Integrity

  • While widespread demyelination is not typical, localized impairments in white matter connectivity may slow information processing in key circuits.

Neuronal Stress and Oxidative Damage

  • Reactive Oxygen Species (ROS): Mitochondrial inefficiency leads to oxidative stress, damaging neurons and synapses.
  • Excitotoxicity: Overactivation of neurons due to excitatory-inhibitory imbalances can lead to synaptic burnout.

Neuroinflammation

  • Microglial Activation: Overactive microglia can prune healthy synapses, leading to regression.
  • Cytokine Dysregulation: Elevated inflammatory markers (e.g., IL-6, TNF-alpha) are frequently observed in regressive autism.

4.   Why Are Skills Lost?

  • Functional Overload: Circuits supporting skills like speech or motor coordination are highly energy-dependent. Mitochondrial dysfunction or inflammation can make these circuits fail under stress.
  • Synaptic Pruning: Abnormal or excessive pruning during development can eliminate neural pathways necessary for previously learned skills.
  • Metabolic Crisis: Temporary or chronic deficits in energy production impair the maintenance of neural plasticity required for skill retention.

 

5. Potential Triggers for Regression

  • Fever or Infections: Increase metabolic demand and inflammatory markers, overwhelming the child's already vulnerable systems.
  • Vaccines or Illnesses: Vaccines do not directly cause autism, but in rare cases of mitochondrial dysfunction, the immune activation they trigger may become excessive and act as a major stressor and cause a "power outage." Regressive autism is the consequence.
  • Environmental Toxins: Pesticides, heavy metals, and air pollution can exacerbate oxidative stress and mitochondrial inefficiency.
  • Nutritional Deficits: Inadequate intake of key nutrients (eg CoQ10, carnitine, B vitamins) may worsen mitochondrial dysfunction.

 

What about early-onset polygenic autism (the main type)?

Well, this post was to explain regressive autism.

Nonetheless, here is the difference between early-onset polygenic autism and regressive polygenic autism.

The specific genetic makeup in polygenic autism likely plays a critical role in determining whether autism manifests as early-onset or regressive autism. The timing and nature of symptoms can depend on the functions of the genes involved, their interactions, and the biological systems they affect.


Early-Onset Autism

  • Key Features:

    • Symptoms are evident from infancy.
    • Includes difficulties with social engagement, communication, and restricted interests or repetitive behaviors from an early age.

  • Genetic Contributions:

    • Synaptic genes: Mutations or variations in genes like SHANK3, SYNGAP1, and NRXN1 disrupt synaptic formation and function during early brain development. This can lead to abnormalities in the foundational wiring of the brain, manifesting as early-onset autism.
    • Genes affecting neurodevelopment: Genes regulating early neuronal proliferation, migration, or differentiation may predispose to early structural or functional deficits.
    • Reduced redundancy: Early-onset cases might involve high-impact mutations in critical pathways, such as those regulating synaptic plasticity, which leave little compensatory capacity for normal development.
    •  

Regressive Autism

  • Key Features:

    • Normal or near-normal development during infancy.
    • Loss of previously acquired skills, typically occurring between 18 months and 5 years of age.

  • Genetic Contributions:

    • Mitochondrial dysfunction-related genes: Variants in genes involved in mitochondrial energy metabolism (e.g. NDUFS4, SLC25A12) may impair the brain's ability to meet energy demands during rapid synaptic pruning and development, triggering regression.
    • Immune or inflammatory response genes: Variations in genes affecting immune regulation (e.g. HLA genes, cytokine signaling genes) could result in neuroinflammation during critical developmental windows, leading to regression.
    • Activity-dependent plasticity genes: Genes like MEF2C or UBE3A are involved in maintaining synaptic connections based on neuronal activity. Disruptions could lead to the loss of skills as synaptic pruning occurs.
    • Environmental sensitivity: Some polygenic profiles might predispose individuals to environmental triggers (e.g. infections, stress, or dietary changes), unmasking vulnerabilities during critical developmental phases.

 

Gene combinations and their timing effects

  • The interaction of multiple genes likely determines whether autism manifests as early-onset or regressive:

    • High-impact mutations in multiple pathways (e.g. synaptic formation and plasticity) might produce early-onset autism.
    • Combinations of moderate-risk variants that interact with environmental or biological stressors (e.g., immune challenges or mitochondrial stress) may predispose to regression.
    • Timing of gene expression: Genes active during infancy might contribute to early-onset autism, while those playing roles during later synaptic refinement may contribute to regression.

 






Friday, 22 November 2024

The plural of anecdote is data – I vote for that

 


Most of my interactions in the world of treating autism are with people I have never met, but you cannot help keep learning new things.

I was recently contacted by a mother who is computer programmer and so used to dealing with “exact sciences.” She had read my book and noted from it that genetic testing in autism often misses important genes. Her child’s report stated that there were no mutated autism genes found. She asked if I know how to analyse the raw data from the testing. That is a bit too technical for me, though I discovered you can upload that file to ChatGPT for analysis. I said that all I do is take the 10-20 genes highlighted in the full report and look them all up, regardless of whether they are obvious autism genes or not. Back came the very short list and after a couple of minutes “Bingo” there was the gene. It was not on the lab’s “autism list,” but in the research one of the genes is described as having potential to cause autism.

In a perfect world the testing lab would have an updated list that includes all the genes known to cause autism, or indeed intellectual disability. It is not the exact science the mother is used to, it is sloppy science. You must dig deeper than you thought would be really necessary.

I did meet, in real life, the parents of a young child with severe autism a week or two ago. They had tried all sorts of expensive therapies, from stem cell therapy to GcMAF from Japan. There was a scandal in the US and Europe a decade ago when GcMAF was marketed to treat cancer, autism and other conditions. In Japan it is still used in alternative clinics, but it is not an approved therapy or a regulated drug anywhere.

I was told that in Japan GcMAF is now made from a patient’s own blood and saw that it is marketed as a "personalized" or "natural" therapy. The process typically involves isolating the Gc protein (a vitamin D-binding protein) from the patient’s blood, chemically modifying it to activate macrophages, and then injecting it back into the patient. I have no idea if it works.

I dared not ask how much it cost, but I did ask if it helped. I suggested that in autism the cheapest and safest therapies are often the most effective.

One reader of this blog remains a fan of the original GcMAF that was produced by David Noakes' company Immuno Biotech. He later went to jail in the UK and then in France for selling an unlicensed medical product. In June 2015 Dr Jeffrey Bradstreet, a well-known autism doctor who used GcMAF, was found dead the day after his office in Buford, Georgia was raided by the FDA, searching for evidence of illegal medical practices related to unapproved drugs.

Japan seems to be more “anything goes” when it comes to alternative medicine. This is probably not what you would have expected. GcMAF is still marketed there to treat cancer and autism.


Safety

Safety should be the prime concern when treating autism. I recall being told the key insight a mainstream doctor took away from attending the Brain Foundation’s autism conference in California a while back was that “you actually can safely treat autism.”

The GcMAF mother did ask me if it was safe.

Using common existing drugs that have been repurposed for autism is safe, as long as they are used responsibly and care is taken regarding interactions and the listed side effects.

Drugs taken orally are often considered inherently safer than those administered via injection or infusion for several reasons, perhaps the key one is the barrier of the digestive system.

When drugs are taken by mouth, they pass through the liver before entering systemic circulation. The liver metabolizes some of the drug, which can detoxify harmful substances or reduce their potency. This serves as a protective mechanism. The stomach and intestines have mechanisms to break down and filter harmful substances, adding another layer of safety.

Injectable drugs require sterile preparation and administration to avoid infections. Oral drugs are less prone to contamination since they do not bypass the body's natural barriers.

Gene therapy can be risky, as was shown recently in a trial for Rett syndrome: 


Patient Death in Rett Syndrome Trial Forces Neurogene to Drop High-Dose Arm

Despite the death, the FDA has allowed Neurogene to forge ahead with the Phase I/II Rett syndrome trial, but using only the lower 1E15 vg dose of its investigational gene therapy NGN-401.

Neurogene revealed in an SEC filing on Thursday that a patient has died in its Phase I/II Rett syndrome clinical trial after being dosed with its investigational gene therapy.

The patient had been treated with the higher, 3E15-vg dose of NGN-401 when they experienced what was initially described only as a treatment-related serious adverse event (SAE). In a follow-up announcement on Monday, Neurogene disclosed that the patient had developed systemic hyperinflammatory syndrome—a known but severe side effect of adeno-associated virus gene therapies—and was in critical condition.

 

The plural of anecdote is data vs The plural of anecdote is not data

"The plural of anecdote is not data" is a commonly used phrase in scientific and analytical discussions. It highlights the idea that individual anecdotes, no matter how numerous, do not constitute reliable evidence or robust data without proper scientific methods like controlled observation, experimentation, and statistical analysis.

The phrase the plural of anecdote is not data turns out to have been a misquote. The original observation, by the political scientist Ray Wolfinger, was just the opposite: The plural of anecdote is data.

Ray Wolfinger said this to emphasize that anecdotes, when systematically collected and analyzed, can form the foundation of meaningful data sets.

Wolfinger's point was not to dismiss the importance of rigorous scientific methods but rather to highlight that even seemingly small, subjective observations—when aggregated and scrutinized—can reveal broader patterns and insights.

This perspective challenges the overly dismissive view of anecdotes in research, acknowledging their potential as the seeds of inquiry and evidence in contexts where comprehensive data collection may not yet exist.

Human biology is not an exact science

The phrase "human biology is not an exact science" reflects the inherent complexity and variability of biological systems, particularly in humans. Unlike the physical sciences, which often operate under strict laws and predictable outcomes, human biology involves numerous interacting factors, such as genetics, environment, lifestyle, and individual variability. This makes it challenging to predict outcomes with precision.

Key reasons include:

  • Genetic diversity: Each person has a unique genetic makeup, leading to different responses to stimuli, medications, and conditions.
  • Environmental influences: Diet, climate, socioeconomic status, and exposure to toxins vary widely among individuals and populations.
  • Biological variability: Even within the same individual, factors like age, hormonal changes, and microbiome composition can cause variations.
  • Unpredictable interactions: Complex systems, such as the immune response or neural activity, often defy simple cause-and-effect explanations.

As a result, human biology relies on probabilities, trends, and patterns rather than absolutes, making it a science of approximations and context-dependent insights.


Again, bumetanide works for some

Our reader A.W. recently completed a trial of bumetanide and in parallel the pediatrician made a trial on her own 5-year-old granddaughter with severe autism. Bumetanide did not work for A.W. but it did for the 5-year-old granddaughter. Notably her speech increased from single words to multiple words. Continued use will now certainly bring profound benefits as she grows up.

We see that human biology is not an exact science, but the situation is made worse by diagnostic stupidity. We know that there are many hundreds of biological dysfunctions leading to the umbrella diagnosis of autism. All autism is still lumped in together in these supposedly gold-standard randomized clinical trials. In layman’s terms you have to compare apples with apples, not apples with kiwis.

As a result, all large randomized clinical trials for core autism symptoms have failed and will likely continue to do so.  Even the large bumetanide trial failed. 

Meanwhile some people, now including A.W.’s pediatrician, will continue effectively treating a small number of children and adults with autism.    


Conclusion

When I presented my take at the recent autism conference in Abu Dhabi I did have a confrontation with the moderator of my session.

I presented the scientific logic behind treating autism but what he saw was someone dealing with anecdotes. He said he only believes in randomized clinical trials. 15 years ago I would also have thought like him—then came my epiphany.

I then learnt the benefit of tinkering with things you supposedly cannot fix but cannot just throw away and replace.

I do fix many other things. I had Monty’s two electric scooters in pieces several times recently, the last job was fixing the battery pack that malfunctioned. I have no previous experience, you just start tinkering, apply common sense and solve the problem. Having a spare scooter is an advantage.  I can always buy a third one.

In years only recently gone by you did discard “malfunctioning” young children into institutions. The doctor would then suggest you try again for another child and wish you better luck next time. Like buying scooter number two and discarding the first one.

Nowadays you keep such children at home, leave them untreated, and only later on put them into mini-institutions (AKA group homes).

I think it pays to tinker (play around fixing things) and improve functioning as much as possible. There is no guarantee of success, but you do have a fighting chance.

Wonder cures promoted in catchy 60 second videos on TikTok, Facebook and Instagram may not be your best choice.