UA-45667900-1
Showing posts with label Vitamin A. Show all posts
Showing posts with label Vitamin A. Show all posts

Friday, 19 January 2024

Cerebral Folate Deficiency – increasing cerebral folate without increasing plasma/blood folate, via activating the reduced folate carrier (RFC)

 


Source: https://autism.fratnow.com/blog/folate-transport-systems-i-transmembrane-carriers/


Two readers of this blog have been telling me about the fundamental role of brain energy and metabolism in autism. Marco sent me a book called Brain Energy by a psychiatrist at the Harvard Medical School. He stumbled upon this subject when he encouraged a patient to lose weight using the ketogenic diet. As well as losing weight, the patient’s decades-long psychiatric disorders seemed to vanish. The author, Dr Palmer, now believes that many of his patients actually have metabolic disorders as the underlying basis of their psychiatric symptoms. 

Our reader Natasa is approaching with a similar idea, essentially that autism features a brain running on empty.

Today’s post is about increasing the level of folate within the brain, by targeting similar metabolic pathways to those that will boost “brain energy.”

Low levels of folate within the brain will cause varying degrees of neurological disorder.

There are three ways folate can cross into the brain.

1.     Folate receptor alpha (FRA)

2.     Proton-coupled folate transporter (PCFT)

3.     Reduced folate carrier (RFC)

Autoantibodies to the FRA have been linked to neurodevelopmental diseases, particularly cerebral folate deficiency, schizophrenia and autism. Recent studies have shown that these neurodevelopmental disorders can be treated with folinic acid (leucovorin).

Dr Frye, Professor Ramaekers and others are targeting the problem of low folate in the brain by supercharging the level of folate in the bloodstream and hoping more squeezes through the blood brain barrier.

In my previous post I mentioned that Agnieszka has pointed out the idea of using the supplement PQQ. This targets the third transport mechanism above, it is aiming to get more folate across via  the Reduced Folate Carrier (RFC).

Somebody recently wrote their PhD thesis on exactly this topic:- 

Regulation of Folate Transport at the Blood-Brain Barrier: A Novel Strategy for the Treatment of Childhood Neurological Disorders Associated with Cerebral Folate Deficiency

Camille Alam, Department of Pharmaceutical Sciences, University of Toronto 

Additionally, we provided in vitro and in vivo evidence that RFC expression and transport activity is inducible by another transcription factor, NRF-1. These findings demonstrate that augmenting RFC functional expression through interaction with specific transcription factors could constitute a novel strategy for enhancing brain folate delivery. Modulating folate uptake at the BBB may have clinical significance due to the lack of established optimal therapy for neurometabolic disorders caused by loss of FRα or PCFT function. 

What Camille is saying is that if folate transport mechanism number 1 and/or number 2 are not working, we can reinvigorate mechanism number 3.

So if you have Dr Frye’s folate receptor antibodies, or PCFT isn’t working then you might focus on Reduced Folate Carrier (RFC).

The good news is that we have lots of ways to target Reduced Folate Carrier (RFC).

We do not, it seems, have any clever ways to target PCFT. 

NRF-1 and PGC1-alpha

There is a lot in this blog about PGC1-alpha, because it is the master regulator for biogenesis of mitochondria.

All those people with impaired “brain energy” would love to activate PGC1-alpha.

NRF-1 is an activator of mitochondrial respiratory chain genes. NRF-1 specifically targets genes encoding subunits of the mitochondrial respiratory chain complexes, particularly complexes I, III, and IV. By binding to their promoters, NRF-1 directly stimulates their transcription, leading to increased synthesis of these critical protein components and enhanced oxidative phosphorylation (OXPHOS) capacity.

Synergy between NRF-1 and PGC-1alpha

PGC-1alpha acts as the upstream regulator. Various stimuli, such as exercise, cold exposure, and certain hormones, can trigger PGC-1alpha expression. Once activated, PGC-1alpha directly interacts with and co-activates NRF-1, enhancing its binding to target gene promoters and amplifying its transcriptional activity.

NRF-1 as the downstream effector.  NRF-1 fine-tunes the expression of specific mitochondrial genes, ensuring a balanced and efficient OXPHOS system. This synergy between PGC-1alpha and NRF-1 optimizes mitochondrial function and cellular energy production.

So for Natasa, trying to boost energy production in the brain and in the rest of the body, it would be ideal to have more NRF-1 and more PGC-1alpha

What has optimized mitochondrial function got to do with more folate in the brain?

It turns out that you can increase expression of Reduced Folate Carrier (RFC) via activating NRF-1 and/or PGC1alpha.

So what is good for your brain energy is likely to also be good for your brain folate.

Nuclear respiratory factor 1 (NRF-1) upregulates the expression and function of reduced folate carrier (RFC) at the blood-brain barrier

Folates are important for neurodevelopment and cognitive function. Folate transport across biological membranes is mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Brain folate transport primarily occurs at the choroid plexus through FRα and PCFT; inactivation of these transport systems results in suboptimal folate levels in the cerebrospinal fluid (CSF) causing childhood neurological disorders. Our group has reported that upregulation of RFC at the blood-brain barrier (BBB) through interactions with specific transcription factors, that is, vitamin D receptor (VDR) could increase brain folate delivery. This study investigates the role of nuclear respiratory factor 1 (NRF-1) in the regulation of RFC at the BBB. Activation of NRF-1/PGC-1α signaling through treatment with its specific ligand, pyrroloquinoline quinone (PQQ), significantly induced RFC expression and transport activity in hCMEC/D3 cells. In contrast, transfection with NRF-1 or PGC-1α targeting siRNA downregulated RFC functional expression in the same cell system. Applying chromatin immunoprecipitation (ChIP) assay, we further demonstrated that PQQ treatment increased NRF-1 binding to putative NRF-1 binding sites within the SLC19A1 promoter, which encodes for RFC. Additionally, in vivo treatment of wild type mice with PQQ-induced RFC expression in isolated mouse brain capillaries. Together, these findings demonstrate that NRF-1/PGC-1α activation by PQQ upregulates RFC functional expression at the BBB and could potentially enhance brain folate uptake.

The hugely simple intervention mentioned above is to just take vitamin D. This has nothing to do with brain energy.

Upregulation of reduced folate carrier by vitamin D enhances brain folate uptake in mice lacking folate receptor alpha

Folates are critical for brain development and function. Abnormalities in brain folate transport have been implicated in a number of childhood neurodevelopmental disorders, including cerebral folate deficiency syndrome, hereditary folate malabsorption, and autism spectrum disorders. These disorders have devastating effects in young children, and current therapeutic approaches are not sufficiently effective. In this study, we demonstrate that functional expression of the folate transporter, reduced folate carrier, at the blood–brain barrier and its upregulation by the vitamin D nuclear receptor can remarkably increase folate transport to the brain. These findings provide a strategy for enhancing brain folate delivery for the treatment of neurometabolic disorders caused by folate transport defects.

 Low vitamin D correlates with poor health, dementia, and death from all causes

Taking vitamin D has become popular in recent years.

A correlation does not guarantee causality.  It was thought that vitamin D might be the silver bullet to improved health in older people. It has not proved to be.

Low vitamin D also correlates with less time outdoors, doing some physical activity. Taking vitamin D does not mean you will live longer, but we know for sure that exercise improves many medical concerns that will improve healthy life expectancy.

The concern many people now have regarding skin cancer leads to some healthy active people having low vitamin D. Put on that sunscreen and your exposed skin will not be able to produce your vitamin D.

Vitamin D is important to health and is easy to maintain in the normal range, but it is just one element of good health. It might be one way to increase folate in the brain, for those who need it. 

 

Conclusion

How do you increase folate in the brain?

The obvious way is to put more folate in your blood, this is the standard therapy. You either take calcium folinate tablets or, very rarely, the more potent infusions.

If you have antibodies blocking transport via FRA, you could follow the hypothesis that these antibodies are from a reaction to cow’s milk and try going dairy-free. There is a complex relationship between milk and folate receptor alpha antibodies (FRAA), but direct evidence of milk causing FRAA production is limited.

Milk, particularly cow's milk, contains proteins similar to folate receptor alpha found in humans. Some individuals, mainly those with a genetic predisposition, could develop FRAA that cross-react with these milk proteins. This cross-reactivity would not necessarily mean the milk directly caused FRAA production but might trigger an existing immune response. Some studies, though not all, have found an association between higher milk consumption and increased FRAA levels.

If you want to increase folate transport via our third mechanism, Reduced Folate Carrier (RFC) you have many options:

The obvious first step is to take a vitamin D supplement to raise levels to the high end of normal. This can be done by taking a larger supplement just once a week, because vitamin D has a long half-life.

As you can see from the study below in children there is a correlation between low vitamin D and low folate in children.

 

Evaluation of correlation between vitamin D with vitamin B12 and folate in children

The present study reported a positive correlation between vitamin D and vitamin B12 and folate levels. Regular measurement of these two micronutrient levels in children with vitamin D deficiency is important for public health.

Vitamin D is low in much of the population, even more so in wintertime. It seems particularly low in children with autism, perhaps because they are spending less time playing outside than other children.


Activate NRF-1 and/or PGC1alpha:

1.     Exercise, particularly endurance training

2.     PQQ supplement

3.     Perhaps resveratrol/pterostilbene

4.     Butyric acid / sodium butyrate

5.     The very safe old drug Metformin

6.     Other type 2 diabetes drugs like Pioglitazone

Metformin has been shown to raise IQ in Fragile-X by about 10 points and has a range of metabolic benefits and even cancer preventative effects. This common diabetes medication primarily targets AMPK, an energy sensor molecule upstream of PGC-1alpha. By activating AMPK, metformin indirectly stimulates PGC-1alpha and subsequently NRF1, leading to enhanced mitochondrial function.

Pioglitazone has been researched in autism and is my choice for peak risk spring/summer aggression and self-injury. Pioglitazone can potentially upregulate PGC-1alpha expression through several pathways:

                    Pioglitazone activates AMPK, an important energy sensor molecule. AMPK can then stimulate PGC-1alpha expression through various signaling pathways.

                    Pioglitazone activates PPAR-gamma and PPAR-gamma directly interacts with PGC-1alpha, potentially increasing its activity.

I think Metformin has a better safety profile than Pioglitazone and so better for every day use.

Butyric acid does have the potential to activate PGC-1alpha. Butyric acid is produced in the gut by fermentation. You need “good” bacteria and fiber. People with healthy diet naturally produce it. You can also buy it as a supplement (sodium butyrate) since it has numerous benefits – everything from gut health, bone health to a tight blood brain barrier.

According to a doctor I was talking to recently, nobody wants to hear that exercise is a key part of health. It is free and the side effects are generally all good ones. Endurance exercise will boost NRF1 and PGC1alpha. Many people with autism are overweight, often due to the psychiatric drugs they have been put on.

Sirtuin activators boost NRF1 and PGC1 alpha. There are drugs and foods which can do this, but a potent way is through exercise.

I hope Dr Frye is checking his patients’ vitamin D levels and supplementing to the safe upper limit.

Those taking I/V calcium folinate might want to look at the more potent ways to activate NRF1 and/or PGC1alpha.

 



Thursday, 21 January 2016

2016 To-do List

I expect many readers of this blog have a list of things to trial in 2016; I certainly do.

Monty’s older brother, codenamed Ted, did say to me recently, “I thought you said you’d be all finished with this, in a couple of years”; that was indeed the intention.  


A medicine cabinet to be proud of, but not mine


It has now been three years.  I never really intended to go so deeply into the science, and I never expected there to be so many “obvious” things un/under-investigated by researchers.

Most people diagnosed these days with “autism” are fortunate to be relatively mildly affected.  Parents of those kids likely find this blog rather shocking; how can so many pills be needed and still you want more?

Some other people also diagnosed with autism, face really big challenges, not limited to:-
  
     ·        Unable to talk
·        Unable to walk
·        Unable to eat (must use G tube)
·        Unable to be toilet trained
·        Unable to read
·        Unable to write
·        Have seizures 

So when asked by a teacher at school, if Monty, now aged 12, has severe autism I responded in the negative.  He does not tick any of the above boxes.

If you have more than “mild autism” it seems that there are likely many dysfunctions and the more you treat, the better the result.  A quest without an end.


School

Ted hates his relatives discussing his school grades and I agree with him that they are entirely his business.  We all know that typical kids vary in how smart they are and how motivated they are.  NT kids tend to get the grades they deserve.

I do break these rules with Monty, but that is because I really want to show that when a person has numerous neurological dysfunctions, as those found in classic autism, if you treat them with science (not with bleach and other nonsense), you can end up in a different, better place. 99.99999% of the world do not know this; perhaps 500 people do know.

Improving IQ will improve the person’s ability to understand and compensate for the dysfunctions that have not been treated.  

Grading academic performance at school is something we all understand and along with its limitations.  We have all been there, so let's use it.

Kids with classic autism do not get the grades they potentially deserve.  Most can be made smarter and it is easy to measure.

Before coming to my to-do list, I did receive another question about what exactly is the effect of bumetanide. 

When I collected Monty from school the other day, his assistant was proudly holding up the latest “quick fire” math test, where speed is seemingly even more important than the right answer.

So Monty, the only one with autism, came first and by a long way. 3 minutes and 35 seconds, with the runner up taking 3:56.  He got 90% correct, but that is enough to keep first place.   The previous test before Christmas he got 100%, but finished 7th out of 16 on speed.  It must be the turkey.

The questions are very simple, since you have to be very fast; but until the age of 9, and the introduction of Bumetanide, the class teacher would never have dreamt of having Monty compete at all.  Coming a distant last in everything would be disheartening, for the teacher. Monty would not have even noticed, let alone cared.

People with Classic Autism, or what Knut termed SDA (strict definition autism), are usually hopeless academically; but with Bumetanide, it does not have to be that way. 

Many people with classic autism leave school 18 years old, still at the level of single digit addition and subtraction, or perhaps up to 20.

If you reach the academic level of Grade 2 (Year 3 in the UK system), that of a typical 7 or 8 year old, by the time you “graduate” high school, you are doing above average.









So Ted is not alone in being able to get good grades.  The PolyPill is indeed worth all the bother.



To-do list


I did have to go through by supply cupboard to see what I had not got round to testing and that I still think has some potential merit.  Some things did get thrown out.

Some old ideas are worth revisiting.

·        Biotin (high dose)
This did seem to have a marginal positive effect and is both cheap and harmless. 

·        Pregnenolone (very low dose)
This also appeared to have some positive effect and should affect GABA subunit expression. High doses have been used in a Stanford clinical trial. We saw in earlier posts that allopregnanolone possesses biphasic, U-shaped actions at the GABAA receptor, meaning that a tiny dose can have the same effect as a large dose.
 I like low doses.  

Old ideas worth developing:-

·        Miyairi 588 bacteria, but at higher doses

This is the bacteria used as a probiotic in Japan for humans, since the 1940s.  It is also added to animal feed to avoid inflammatory disease and so produce healthier animals.

The science showed that it should be helpful to raise Butyrate levels.  It can be achieved directly via supplementation, with sodium butyrate, and indirectly by adding a butyrate-producing bacteria, such as Clostridium Butyricum or Miyari 588.

I have been using a tiny dose of Miyari 588 for months.  It achieves what it is sold for in Japan, in that it reduces gas, which is the only obvious negative side effect of Monty’s Polypill, other than diuresis.

The positive side effect of the Polypill is near perfect asthma control.  Asthma is an auto-immune/inflammatory disease, highly comorbid with autism. 

The effect of Miyari 588 is reversible because this bacteria cannot survive long in the intestines, which is why you have to take it every day.  It crowds out some of the other bacteria in the intestines, but they will soon grow back.


New ideas already in this blog:-

·        Diamox

I did suggest on several occasions that it might be possible to get a “Bumetanide plus” effect by adding Diamox.

Diamox (Acetazolamide) is another diuretic and it is a carbonic anhydrase inhibitor


Acetazolamide is a carbonic anhydrase inhibitor, hence causing the accumulation of carbonic acid Carbonic anhydrase is an enzyme found in red blood cells that catalyses the following reaction:



hence lowering blood pH, by means of the following reaction that carbonic acid undergoes:


The mechanism of diuresis involves the proximal tubule of the kidney. The enzyme carbonic anhydrase is found here, allowing the reabsorption of bicarbonate, sodium, and chloride. By inhibiting this enzyme, these ions are excreted, along with excess water, lowering blood pressure, intracranial pressure, and intraocular pressure. By excreting bicarbonate, the blood becomes acidic, causing compensatory hyperventilation, increasing levels of oxygen and decreasing levels of carbon dioxide in the blood

This change in bicarbonate will also affect the AE3 and NDAE exchangers.

As you will see in the figure below the regulation of bicarbonate HCO3- and pH is directly connected to chloride Cl- homeostasis.  This means that via AE3 and NDAE you can affect intracellular chloride levels by change the level of HCO3-

In turns this means that Diamox (Acetazolamide) really should have an effect on the level of intracellular chloride.

This in turn suggested to me that Diamox could augment the effect that bumetanide has on NKCC1.

 In the case that Bumetanide can lower intracellular chloride, but not to the optimal level to correct the GABA dysfunction, Diamox might be able to lower chloride levels a little further so further shifting GABA to inhibitory.










http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1317631/

Neuronal activity results in significant pH shifts in neurons, glia, and interstitial space. Several transport mechanisms are involved in the fine-tuning and regulation of extra- and intracellular pH. The sodium-independent electroneutral anion exchangers (AEs) exchange intracellular bicarbonate for extracellular chloride and thereby lower the intracellular pH. Recently, a significant association was found with the variant Ala867Asp of the anion exchanger AE3, which is predominantly expressed in brain and heart, in a large cohort of patients with idiopathic generalized epilepsy. To analyze a possible involvement of AE3 dysfunction in the pathogenesis of seizures, we generated an AE3-knockout mouse model by targeted disruption of Slc4a3. AE3-knockout mice were apparently healthy, and neither displayed gross histological and behavioral abnormalities nor spontaneous seizures or spike wave complexes in electrocorticograms. 



After only a couple of days of Diamox, it is pretty clear that there is indeed a “bumetanide plus” effect.  So the same changes that were noted when starting bumetanide appear again.

A promising start to 2016.



·        Ponstan

This is the NSAID that is also suggested to be useful to affect the ion channels expressed by the genes ANO 2/4/7 & KCNMA1.  We saw in this post

http://epiphanyasd.blogspot.com/2015/12/autism-treatments-proposed-by-clinical.html

where Knut highlighted that Fenamates act as CaCC inhibitors and also stimulate BKCa channel activity.  Ponstan is a Fenamate.



·        Vitamin A

This was Maja’s discovery, that in some people vitamin A will stimulate oxytocin, via upregulation of CD38.


·        Zinc

Zinc should affect GABA, particularly in immature neurons.  Zinc homeostasis is disturbed in some autism and perhaps, in some people, a small dose of zinc may actually have a positive effect.  Simple to check.

Clioquinol, the drug that shifts zinc to the “right” place, is not without risks.


·        Picamilon

Once the GABA switch has been repaired, it may be time for a little extra GABA.  GABA should not be able to cross the blood brain barrier (BBB), but in the form of Picamilion, it does cross the BBB.


·        Inositol

This it naturally produced in the body from glucose and used to be known as vitamin B8.  In some people Inositol reduces OCD and stereotypy.  Simple to check.


·        Montelukast

This is an asthma drug, considered very safe in children, that Dr Kelley (formerly of Johns Hopkins and likely the cleverest autism clinician)  uses in children with AMD, as a short term therapy, when they are sick and, very interestingly, before immunizations.  This is to avoid further mitochondrial damage.  Montelukast is a leukotriene receptor antagonist (LTRA) used for the maintenance treatment of asthma and to relieve symptoms of seasonal allergies.

Dr Kelley also uses Ibuprofen as a short term therapy to counter the effects of increased cytokine production.  Montelukast is more potent and has different side effects, meaning it might be a better choice than ibuprofen for some people.

Ibuprofen may be OTC, but, more than very occasional use, can cause side effects in many people.  These side effects are caused by NSAIDs also being COX-2 inhibitors, which leads to stomach and intestinal adverse reactions.

Since I have determined that in the case of autism I deal with, the surge in cytokines like IL6 causes behavioral regression, Montelukast might be a good alternative to Ibuprofen to treat some types of autism flare.  

So a new addition to the autism flare-up toolkit, I hope.

  

Ideas not yet in this blog:-

·        Curcumin

Curcumin, and particularly some of the substances within it, have been shown to have very interesting autism-relevant effects, particularly in vitro (in test tubes).  Whether taking curcumin orally, in reasonable doses, produces any of these effects in humans is a big question.  Many such substances like luteolin and resveratrol fail to meet expectations in humans, due to poor bioavailability.

There are various ways to improve the bioavailability of curcumin, so it seems worth investigating.



·        5-loxin

Frankincense has been used for 5,000 years.  More recently, two thousand years ago, three wise men did bring gifts of gold, frankincense, and myrrh.

Frankincense is an aromatic resin obtained from trees of the genus Boswellia.  Boswellia is used for inflammatory conditions like arthritis in a similar way to curcumin.

There are six boswellic acids, one is most active. This fraction is called AKBA. 5-Loxin is a boswellia supplement claiming to deliver a high standardized level of AKBA.

5-Loxin does seem to help some people with arthritis, but does it have any benefit for the pro-inflammatory aspects found in some autism?  I am not expecting much, but you never know.

  
Ideas suggested to me by others, that look interesting:-


·        Mint/Menthol

This is Natasa’s discovery and there is evidence to show that Menthol does indeed affect GABAA receptors.



These results suggest that menthol positively modulates both synaptic and extrasynaptic populations of GABAA receptors in native PAG neurons. The development of agents that potentiate GABAA-mediated tonic currents and phasic IPSCs in a manner similar to menthol could provide a basis for novel GABAA-related pharmacotherapies.

  
·        NIAGEN / Nicotinamide Riboside

This was highlighted by Tyler and is another potential therapy for oxidative stress.  Not as cheap as peppermint, but definitely interesting, perhaps particularly for those with autism and mitochondrial dysfunction.

Also note that there are odd recurring links between some autism and obesity. This is not the first anti-obesity therapy that potentially has some benefit for autism.



Summary
As NAD+ is a rate-limiting cosubstrate for the sirtuin enzymes, its modulation is emerging as a valuable tool to regulate sirtuin function and, consequently, oxidative metabolism. In line with this premise, decreased activity of PARP-1 or CD38—both NAD+ consumers—increases NAD+ bioavailability, resulting in SIRT1 activation and protection against metabolic disease. Here we evaluated whether similar effects could be achieved by increasing the supply of nicotinamide riboside (NR), a recently described natural NAD+ precursor with the ability to increase NAD+ levels, Sir2-dependent gene silencing, and replicative life span in yeast. We show that NR supplementation in mammalian cells and mouse tissues increases NAD+ levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities. Consequently, our results indicate that the natural vitamin NR could be used as a nutritional supplement to ameliorate metabolic and age-related disorders characterized by defective mitochondrial function.
  



Low-grade chronic inflammation (metaflammation) is a major contributing factor for the onset and development of metabolic diseases, such as type 2 diabetes, obesity, and cardiovascular disease. Nicotinamide riboside (NR), which is present in milk and beer, is a functional vitamin B3 having advantageous effects on metabolic regulation. However, the anti-inflammatory capacity of NR is unknown. This study evaluated whether NR modulates hepatic nucleotide binding and oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Male, 8-week-old KK/HlJ mice were allocated to the control or NR group. NR (100 mg/kg/day) or vehicle (phosphate-buffered saline) was administrated by an osmotic pump for 7 days. Glucose control, lipid profiles, NLRP3 inflammasome, and inflammation markers were analyzed, and structural and histological analyses were conducted. NR treatment did not affect body weight gain, food intake, and liver function. Glucose control based on the oral glucose tolerance test and levels of serum insulin and adiponectin was improved by NR treatment. Among tested lipid profiles, NR lowered the total cholesterol concentration in the liver. Histological and structural analysis by hematoxylin and eosin staining and transmission electron microscopy, respectively, showed that NR rescued the disrupted cellular integrity of the mitochondria and nucleus in the livers of obese and diabetic KK mice. In addition, NR treatment significantly improved hepatic proinflammatory markers, including tumor necrosis factor-alpha, interleukin (IL)-6, and IL-1. These ameliorations were accompanied by significant shifts of NLRP3 inflammasome components (NLRP3, ASC, and caspase1). These results demonstrate that NR attenuates hepatic metaflammation by modulating the NLRP3 inflammasome

  

  

  

An apparently crazy idea of my own, but actually serious:-


·        Propolis tincture, without the propolis

The BIO 30 Propolis from New Zealand is a (mild) PAK1 inhibitor.  One reader is convinced of its cognitive enhancing effects in autism .  I also think it had an effect, but in our case not as potent as that reader.  Now I am wondering what was it that produced this effect. 

Most propolis is made as a tincture with ethanol.  Propolis is not soluble in water.  They typically use 70% ethanol to make propolis tincture.  “Non-alcoholic” tinctures use glycol.

In the last post we saw ethanol has pronounced effects on several GABAA receptor subunits, mainly delta but also alpha, including possibly down regulating alpha 5.

So was it the propolis, or the ethanol that has the effect?

Propolis tincture is either made with ethanol (grain alcohol) or if it is “alcohol free” they use propylene glycolPropylene glycol actually is a food ingredient but it is also used to de-ice aircraft in winter.  Ethylene glycol is the antifreeze in your car and you would not want to drink that.

Compared to ethanol, glycol can dissolve less propolis, 

A quick check of school chemistry reminds us that if it is an –ol , it’s an alcohol.

·        Alcohols have at least one hydroxyl group
·        Diols have two hydroxyl groups

Propylene glycol is  C3H8Oand as you can see below it has two hydroxyl groups (the – OH), so it is both a diol and an alcohol. 






So your Propolis tincture can be ethanol-free, but it cannot be alcohol-free.  Someone might point that out to the supplement makers.

It also should be noted that propylene glycol has known effects on GABA very similar to ethanol.


  
This suggests that the users of ethanol-free BIO30 may also be seeing responses unrelated to propolis.

Propylene glycol even has an E-number, it is E1520.  It is cheap and they even sell it on Amazon.

Food grade ethanol is normally not sold to the public.

In lay terms, ethanol and alcohol are interchangeable, so one corner of the supermarket contains food grade ethanol, with some impurities.

Japanese research suggests that these impurities are much more potent than ethanol in modulating GABA receptors.  It is the fragrant compounds that accumulate over the years on wooden barrels that cause this effect.

The twenty drops of propolis suggested to me by the Japanese PAK1 researcher/doctor contained about 1ml of ethanol.  It seems that to get an effect on GABA similar to this amount of ethanol would require a much smaller amount to well-aged Japanese whiskey.

So if someone over 18 responds well to twenty drops of BIO 30 propolis, it would helpful if they could compare the effect with 1ml of Propylene glycol (E1520), 1ml of ethanol, if they find it, and with a few drops of well-aged whiskey.