UA-45667900-1

Thursday, 14 February 2019

More Politics of Autism, the NCSA, Prader Willi, Happy Puppets and the Crazy Car Wash


Kempton Park Racecourse, near London - now known for its Hot Dogs

A science-heavy post about microglia is in the works, but today’s post ties together some less complex issues.
As I mentioned in an earlier post, there is a new book out called the Politics of Autism, by Dr Siegel.
I did buy 2 copies, so I could give one away. It is a bit heavy going and I did skip some parts, but it is as expected a good read. The author does personally know/knew some of the “big names” in autism like Lovaas and even Bernie Rimland.
I was interested to read that Lovaas basically cheated in his famous ABA “clinical” trial, where he showed amazing responses. All the trial participants that did not develop speech during the trial were “retired” during the trial. He rigged the result, by removing those less responsive to the trial therapy.  If you follow this subject, you will know that some Americans and Canadians get very upset when intensive ABA is not provided for free to their child, believing that it would likely "cure" their child, like in the Lovaas study. This trial is constantly used to support the idea of intensive early intervention producing dramatic life changing results.  In most people with severe autism, no amount of behavioural intervention is going to change the fact that they are severely autistic. It does though make many such people more functional, which can greatly help them. Expectations need to be realistic and parents should not feel guilty if they cannot provide many years of therapy costing $60,000 a year. You can achieve a great deal at much less cost.
Siegel thinks that Bernie Rimland (of ARI and DAN!) started out well and then went a bit dotty.
She makes excellent points about education.
She makes the mistake of venturing into the realm of medicine, which is clearly not her field and tells readers not to bother trying to treat the biology autism. 10 years ago I would have been mistakenly backing her up on this, but then I had my epiphany, thanks to reading about Professor Ben Ari’s small clinical trial of Bumetanide in 2012.

Who should buy the book?
This is not a feel good book, it is a very down to earth book that tells the story as it is, not the sugar coated version.

I thought this book would be good for people who study autism at University, like one of Monty’s assistants; she now has copy number two.
Many people with Asperger’s would likely hate this book and think Dr Siegel is a witch.

I thought most parents of people with severe autism probably do not want to hear more about how bad things are, but perhaps I was wrong. Dr Siegel provided one of her old posts as a guest blog post for the newly formed National Council on Severe Autism (NCSA).

The NCSA is a new group set up to represent what used to be autism, before the diagnosis got broadened. They are really all about DSM3 autism, or what we called Strictly Defined Autism (SDA).



Horror stories or just telling it how it is?
Some people with mild autism seem to be very upset by what NCSA are advocating, but that is hardly a surprise.

Decide for yourself whether you consider the NCSA to be spreading horror stories, or just telling it how it is.
An attention-seeking UK daytime TV “celebrity” has a son with Prader Willi syndrome and he is regularly described as having autism.  Prader Willi is associated with an insatiable appetite which, if uncontrolled, leads to obesity; reduced IQ, impaired vision, behavioural problems and a bad temper. It is caused by an anomaly on chromosome 15, which causes a loss of function of some of those 600 genes.

75% of cases occur when part of the father's chromosome 15 is deleted.  In another 25% of cases, the person has two copies of chromosome 15 from their mother and none from their father. As parts of the chromosome from the mother are turned off, they end up with no working copies of certain genes
A similar mechanism occurs in Angelman syndrome, except the defective chromosome 15 is from the mother or two copies are from the father.


People with Angelman’s have small heads and are not obese; because they are generally very happy, they are sometimes called Angels.  The condition used to be called Happy Puppet Syndrome, which apparently is not seen as politically correct these days. I should add the Prader Willi could be called “please lock the fridge syndrome”, because if you do not remove food the child may become severely obese before he/she is 10, develop type 2 diabetes, rapidly become insulin dependent and then have even bigger problems.
The Prader Willi mother is campaigning for disabled people’s rights, which is of course a nice thing to do; she is against abuse/trolling on the internet.  She recently revealed that at 16 years of age, her verbal, but obese son cannot wash or dress himself and no longer attends school regularly, because he has learnt that by having an early morning meltdown, the driver will refuse to take him to school. Like many teenage boys he would rather stay home than go to school.

The mother says she is concerned he is missing out on schooling.
I dare say Dr Siegel would ask what kind of schooling is this 16 year old getting? Perhaps learning to wash himself and dress should first be mastered.  In someone without severe MR/ID this is a matter of correct instruction and unlimited perseverance, by someone.

Dr Siegel could repurpose her blog post again, this time:

Diagnose and adios? Prader Willi families deserve better

The mother says she is thinking of putting her son into residential care. That sounds great, but who is then ever going to teach him to wash and dress himself and restrict his eating? If Mum cannot, why would some employee earning near minimum wage in a care home make a better job of it? What happens when he starts to need insulin injections twice a day, because obesity was not addressed?
Sometimes horror stories do not reflect the child, but how they are being cared for and all with the best intentions.  Most such parents need help, indeed it’s to be expected. This all could be solved by some home visits from someone like Dr Siegel.  More of these people do exist; our Greek-American ABA consultant would give very similar advice to Dr Siegel. Avoiding school would not be tolerated, regardless of any meltdown. Someone with an IQ>60 definitely can be taught to dress himself, even if occasionally a shirt goes on back to front.  Food has to be restricted.

Monty's morning assistant at school works with many other kids with autism and from what she tells me, it is clear that many issues repeat, even the publicity-hungry mother who ends up failing her own child. Since our morning assistant is writing a self-help manual for parents dealing with severe autism, I can imagine where my other copy of Dr Siegel's book is destined to go. At least my autism intervention library is being put to further use.
It should be noted that some autism mothers react very dynamically. We have one reader who identified a novel effective drug therapy for her child and is now trying to commercialise it, we have another reader who has inspired and funded research into what was a rarely studied genetic "autism". Parents react very differently to the challenge of raising a child with a severe disability, in some it brings out the best.  It is not just about having a high IQ, or a lot of money.
Some people cannot afford to pay for such 1:1 advice, but many might choose to, if they knew it existed. In many countries, like some provinces in Canada, families dealing with a disability are given substantial financial resources to help themselves. In Ontario there is currently uproar on the proposed $140,000 cap on free autism therapies per child. That is $140,000 more free money that we received. I recently calculated our total cost of autism up to the age of 16 and when converted into Canadian money it is $190,000. They should of course have different limits based on different levels of severity. In the DSM5 jargon you have 3 levels of need/severity and so you could have a low limit for level 1, since Aspies do not benefit from vast amounts of ABA, say $20,000 and a high limit for level 3, say $250,000. Then wait for the surge in (re)diagnosis of level 3 autism in Ontario.

            Diagnosing for Dollars (click, for Dr Siegel's take)
Many “horror stories” appearing on the NCSA forums likely could be avoided by applying personalized medicine, rather than cookie cutter medicine, or standard psychiatric medicine. 

Kids with undiagnosed genetic disorders 
I am not a doctor, but I do quite regularly get to play guess the undiagnosed metabolic/genetic disorder.  The latest one is what would cause deafness and hypertonia and apparently no other symptoms.

I recently read that US medical insurance generally will not pay for genetic testing for autism, because there are no therapies.
But yet there sometimes are, if you look.

Look at the recent comments in this blog about a child whose genetic testing revealed a problem with the KCNQ3 gene, which encodes the Kv7.3 potassium ion channel. You can look up Kv7.3 channelopathy, or just the KCNQ3 gene.
This is at least partially treatable just by using google and the excellent Genecards human gene database; both cost absolutely nothing.


You can both activate and block this ion channel.  You will need one or the other.


Jobs for adults with Autism
You do quite regularly hear about how an IT company like Microsoft, or a big bank is actively recruiting people with autism. This always makes me laugh.  IT jobs for Aspies - yes of course, but autism?

People with DSM3 autism are not commuting to work reading the Wall Street Journal, or the Financial Times; but there should be things they can do.
Many years ago there used to be special companies set up to employ disabled people. This became not politically correct, for some reason.

Remploy is an organisation in the United Kingdom which provides employment placement services for disabled people. It is now a “welfare-to-work provider” finding jobs for disabled people, but for most its existence it directly employed disabled people in a number of factories, owned by Remploy itself, and subsidised by the UK government.  This was phased out at the start of the 21st century, under the prevailing view that disabled people should have mainstream jobs.

Sadly, many disabled people cannot hold down a mainstream job.

You might recall Andreas Rett (of Rett Syndrome), as well as being a doctor, established a factory in which neurologically disabled youngsters could work. That was 50 years ago.

One supermarket chain where we live sometimes has young people with Down Syndrome, or MR/ID helping to pack your groceries.

Monty’s afternoon assistant was telling me how sad it is that one Aspie her age is still without any job. My reply was that someone has to create him a job, just like we will have to create Monty a job.
I am a big believer in developing musical and other artistic skills, it did not get the above Aspie a job, but it does give him something to do.

Our very worldly Greek-American ABA consultant told me long ago that the biggest problem “her kids” face, as they grow up, is that they have nothing to do with all their time.  No job and no hobbies is not a good combination.
As I write this text, Monty is downstairs drawing a frog. Before that he was playing all the melodies in his current piano book.  Before that he washed his Mum’s car and earlier on we were washing my car.

Monty’s Crazy Car Wash
You gotta be a little bit Crazy to work here!
You gotta be totally Crazy not to try it!

I think Monty will end up more capable than having a car wash, but it is quite a suitable job for many young people with DSM3 autism. It is a genuine job, whereas packing groceries is not and the Crazy Car Wash is a lot of fun.

Good journalism?
There are very few journalists who are credible when they write about autism; they generally do not understand it at all (you cannot blame them for that!); then there are some Aspie ones, who will by definition tend to lack empathy, and they can completely fail to understand the severe end of the spectrum, often in a jaw-dropping fashion.

I rather liked this article by a 28 year old journalist taking charge of her 24 year old sister with autism, for the first time and going for a girls’ weekend riding horses.


I wonder at what point my 18 year son will be taking charge of his 15 year old sibling with autism, for a boys’ weekend. Hopefully I will not need to wait 10 years.
I expect it will be something eventful like Tom Cruise and Dustin Hoffman on a road trip to Las Vegas, in the excellent, but nowadays much maligned, film Rain Man. Bernie Rimland was the autism advisor for this film. 

This Christmas in London on December 26th, Monty asked me if he was going to be having a hot dog for lunch; leaving me to ponder where did that idea come from. He accurately recalled that 12 months previously, on Boxing Day, he had gone with Uncle Stuart and Dad to Kempton Park for a boys’ day out at the horse races. The weather is usually cold and damp (i.e. miserable), but you do get to have a hot dog.


Conclusion
If you can take the sometimes brutal honesty of describing things as they really are, then Dr Siegel’s new book is going to be appreciated and you will also like the new US National Council on Severe Autism. 

A sense of humour will do you much more good than political correctness ever will. Upsetting people can sometimes be necessary to enable them to acknowledge their own delusions. I am beginning to sound like Dr Siegel, who likely would take her car to the Crazy Car Wash, should Monty open a branch in California.
It is up to parents to stop their child becoming obese, even more so when they have a genetic propensity towards this condition. 

If you do not have $60,000 a year to pay for ABA and feel you are missing out, make your own intervention program instead. Buy some books and recruit some helpers.  Don't spend years fuming in a waiting list, pondering what might have been.










.

Thursday, 7 February 2019

Pterostilbene for Neuromodulation – worth a look?

Google have just discontinued Google+

Many people followed this blog via Google+ 

You can either follow by email (just to right of the blueberries), or follow by Blogger



Blueberries

A common criticism of this blog is that it is mainly about prescription drugs rather than OTC supplements.
Today’s post is about a supplement that is highly regarded by our reader Ling.
Pterostilbene is like a super potent version of resveratrol.  

Resveratrol is quite well known and has long been put forward as having some potentially highly beneficial health effects, but in practise it is just too poorly absorbed to have much effect in humans.
Pterostilbene is found in blueberries.  Also found in blueberries is Anthocyanin, which is worth a mention in this post, it is what gives blueberries their colour; very often it is the colour in a food that underlies part of its health benefit. This is why eating a mixed colour diet is a wise idea.
Aronia is extremely rich in anthocyanins and Aronia juice is very common where I live. We even have a bottle of the dark coloured juice in the kitchen.
The purple colour in beetroot is betanin, a so-called betacyanin and may well have anti-Alzheimer’s effects, inhibiting plaque formation.
Anthocyanin is put forward as one reason certain Japanese who eat large amounts of purple sweet potato do not suffer much cancer or dementia and live a very long time.


Today we are mainly looking at pterostilbene, but if you want Anthocyanins, to avoid dementia, just eat blue and purple coloured fruit and vegetables on a very regular basis.
Ling has proposed pterostilbene as a PDE4 inhibitor, but as is often the case, it has numerous other effects, so it would be hard to know which is the main reason it might be therapeutic.  


Known biological effects of Pterostilbene                                                                                   
Here is an excellent graphic that highlights many of the effects of Pterostilbene, other than on PDE4.





The regular readers of this blog will note that the great majority of the above signalling molecules are implicated in autism.

The proposed effects on the brain are highlighted in the next graphic





The source paper is here: -  

           

Based on the evidence presented, PTE (Pterostilbene) is more bioavailable and better at evoking molecular and functional events than RES (Resveratrol) in vivo

Although clinical trials are underway to assess the effects of RES in diseases such as dementia and AD, pre-clinical and clinical studies on PTE have yet to be conducted. Furthermore, the biological effects of many of the structural analogues of RES and PTE are unknown, and no studies have identified the metabolites of RES or PTE in brain tissues. There is a need for future studies to identify means of enhancing the efficacy and bioavailability of these compounds and to analyse the metabolites of these compounds in thebrain. Altogether, the evidence from a variety of studies strongly suggests the potential of RES and PTE as promising bioactive agents to improve brain health and prevent neurodegeneration

Most research, but not all, concerns aging and dementia. 


Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is a natural dietary compound and the primary antioxidant component of blueberries. It has increased bioavailability in comparison to other stilbene compounds, which may enhance its dietary benefit and possibly contribute to a valuable clinical effect. Multiple studies have demonstrated the antioxidant activity of pterostilbene in both in vitro and in vivo models illustrating both preventative and therapeutic benefits. The antioxidant activity of pterostilbene has been implicated in anticarcinogenesis, modulation of neurological disease, anti-inflammation, attenuation of vascular disease, and amelioration of diabetes. In this review, we explore the antioxidant properties of pterostilbene and its relationship to common disease pathways and give a summary of the clinical potential of pterostilbene in the prevention and treatment of various medical conditions.

Resveratrol is a natural phytoestrogen with neuroprotective properties. Polyphenolic compounds including resveratrol exert in vitro antioxidant, anti-inflammatory, and antiamyloid effects. Resveratrol and its derivative pterostilbene are able to cross the blood-brain barrier and to influence brain activity. The present short review summarizes the available evidence regarding the effects of these polyphenols on pathology and cognition in animal models and human subjects with dementia. Numerous investigations in cellular and mammalian models have associated resveratrol and pterostilbene with protection against dementia syndromes such as Alzheimer's disease (AD) and vascular dementia. The neuroprotective activity of resveratrol and pterostilbene demonstrated in in vitro and in vivo studies suggests a promising role for these compounds in the prevention and treatment of dementia. In comparison to resveratrol, pterostilbene appears to be more effective in combatting brain changes associated with aging. This may be attributed to the more lipophilic nature of pterostilbene with its two methoxyl groups compared with the two hydroxyl groups of resveratrol. The findings of available intervention trials of resveratrol in individuals with mild cognitive impairment or AD do not provide evidence of neuroprotective or therapeutic effects. Future clinical trials should be conducted with long-term exposure to preparations of resveratrol and pterostilbene with high bioavailability.

Low-dose pterostilbene, but not resveratrol, is apotent neuromodulator in aging and Alzheimer's disease.

Recent studies have implicated resveratrol and pterostilbene, a resveratrol derivative, in the protection against age-related diseases including Alzheimer's disease (AD). However, the mechanism for the favorable effects of resveratrol in the brain remains unclear and information about direct cross-comparisons between these analogs is rare. As such, the purpose of this study was to compare the effectiveness of diet-achievable supplementation of resveratrol to that of pterostilbene at improving functional deficits and AD pathology in the SAMP8 mouse, a model of accelerated aging that is increasingly being validated as a model of sporadic and age-related AD. Furthermore we sought to determine the mechanism of action responsible for functional improvements observed by studying cellular stress, inflammation, and pathology markers known to be altered in AD. Two months of pterostilbene diet but not resveratrol significantly improved radial arm water maze function in SAMP8 compared with control-fed animals. Neither resveratrol nor pterostilbene increased sirtuin 1 (SIRT1) expression or downstream markers of sirtuin 1 activation. Importantly, markers of cellular stress, inflammation, and AD pathology were positively modulated by pterostilbene but not resveratrol and were associated with upregulation of peroxisome proliferator-activated receptor (PPAR) alpha expression. Taken together our findings indicate that at equivalent and diet-achievable doses pterostilbene is a more potent modulator of cognition and cellular stress than resveratrol, likely driven by increased peroxisome proliferator-activated receptor alpha expression and increased lipophilicity due to substitution of hydroxy with methoxy group in pterostilbene                                                                                                        


Effect of resveratrol and pterostilbene on aging and longevity.

Over the past years, several studies have found that foods rich in polyphenols protect against age-related disease, such as atherosclerosis, cardiovascular disease, cancer, arthritis, cataracts, osteoporosis, type 2 diabetes (T2D), hypertension and Alzheimer's disease. Resveratrol and pterostilbene, the polyphenol found in grape and blueberries, have beneficial effects as anti-aging compounds through modulating the hallmarks of aging, including oxidative damage, inflammation, telomere attrition and cell senescence. In this review, we discuss the relationship between resveratrol and pterostilbene and possible aging biomarker, including oxidative stress, inflammation, and high-calorie diets. Moreover, we also discuss the positive effect of resveratrol and pterostilbene on lifespan, aged-related disease, and health maintenance. Furthermore, we summarize a variety of important mechanisms modulated by resveratrol and pterostilbene possibly involved in attenuating age-associated disorders. Overall, we describe resveratrol and pterostilbene potential for prevention or treatment of several age-related diseases by modulating age-related mechanisms.

One area of autism research concerns targeting mTOR signalling. This is covered in the paper below


and was the subject of this blog post from 2015


Targeting the PI3K/Akt/mTOR signaling pathway by pterostilbene attenuates mantle cell lymphoma progression.


Mantle cell lymphoma (MCL) is an aggressive and mostly incurable B-cell malignancy with frequent relapses after an initial response to standard chemotherapy. Therefore, novel therapies are urgently required to improve MCL clinical outcomes. In this study, MCL cell lines were treated with pterostilbene (PTE), a non-toxic natural phenolic compound primarily found in blueberries. The antitumor activity of PTE was examined by using the Cell Counting Kit-8, apoptosis assays, cell cycle analysis, JC-1 mitochondrial membrane potential assay, western blot analysis, and tumor xenograft models. PTE treatment induced a dose-dependent inhibition of cell proliferation, including the induction of cell apoptosis and cell cycle arrest at the G0/G1 phase. Moreover, the PI3K/Akt/mTOR pathway was downregulated after PTE treatment, which might account for the anti-MCL effects of PTE. Synergistic cytotoxicity was also observed, both in MCL cells and in xenograft mouse models, when PTE was administered in combination with bortezomib (BTZ). The antitumor effects of PTE shown in our study provide an innovative option for MCL patients with poor responses to standardized therapy. It is noteworthy that the treatment combining PTE with BTZ warrants clinical investigation, which may offer an alternative and effective MCL treatment in the future.


And finally, PDE4
Inhibiting PDE4 has some very useful anti-inflammatory benefits. It may also improve myelination and indeed cognition.  PDE4 inhibitors are currently used to treat severe asthma and in clinical trials for Multiple Sclerosis (MS) and cognitive enhancement.
There are different sub-types of PDE4.
Inhibiting one of the subtypes has the tendency to make you want to vomit.  This is currently the drawback that limits the use of PDE4 inhibiting drugs.
A selective PDE4 inhibitor is required.
As Ling has found, research does indeed show that pterostilbene is a PDE4 inhibitor.

The molecular basis for the inhibition of phosphodiesterase-4D by three natural resveratrol analogs. Isolation, molecular docking, molecular dynamics simulations, binding free energy, and bioassay.

The phosphodiesterase-4 (PDE4) enzyme is a promising therapeutic target for several diseases. Our previous studies found resveratrol and moracin M to be natural PDE4 inhibitors. In the present study, three natural resveratrol analogs [pterostilbene, (E)-2',3,5',5-tetrahydroxystilbene (THSB), and oxyresveratrol] are structurally related to resveratrol and moracin M, but their inhibition and mechanism against PDE4 are still unclear. A combined method consisting of molecular docking, molecular dynamics (MD) simulations, binding free energy, and bioassay was performed to better understand their inhibitory mechanism. The binding pattern of pterostilbene demonstrates that it involves hydrophobic/aromatic interactions with Phe340 and Phe372, and forms hydrogen bond(s) with His160 and Gln369 in the active site pocket. The present work also reveals that oxyresveratrol and THSB can bind to PDE4D and exhibits less negative predicted binding free energies than pterostilbene, which was qualitatively validated by bioassay (IC50=96.6, 36.1, and 27.0μM, respectively). Additionally, a linear correlation (R(2)=0.953) is achieved for five PDE4D/ligand complexes between the predicted binding free energies and the experimental counterparts approximately estimated from their IC50 values (≈RT ln IC50). Our results imply that hydrophobic/aromatic forces are the primary factors in explaining the mechanism of inhibition by the three products. Results of the study help to understand the inhibitory mechanism of the three natural products, and thus help the discovery of novel PDE4 inhibitors from resveratrol, moracin M, and other natural products.


Conclusion
Based on Ling’s recommendation, I have ordered some Pterostilbene and I am curious to see its effects. It is another substance that might be helpful for older adults, if not for your case of autism.
It is clear that in most cases resveratrol is a substance whose effect is limited to the test tube rather than humans. As a “super-resveratrol” we should take a closer look at Pterostilbene.
Eating large amounts of fruits, vegetables and berries with anthocyanins and betacyanins is going to do you no harm and does look a way to possibly secure a long healthy future, like those Japanese centenarians in Okinawa.







Friday, 1 February 2019

For “Autism” just read “Special”






The entry to Bethlehem through the separation wall from the road to Jerusalem

We recently visited Jerusalem, but our return flight was cancelled due to snow at our return destination.  As a result, we got to experience the inflight TV on Turkish Airlines as we came home via Istanbul.  The TV is nearly all family friendly American programming.
I was surprised how many of the family programs now include characters with “autism” and even one character discussing her own IEP (Individual Education Plan). None of these characters would have been diagnosed with anything back in the days I was in school. My 15-year-old son with classic autism has never had an IEP; it feels like I am his IEP, but I am not complaining.
What I did find interesting was an episode in which, when confronted by a 10-year-old Aspie asking her annoying personal questions, a teenage cheerleader just said “oh, you’re one of those special kids”.
Special is a nice way of saying different and nobody would think of it as a biological diagnosis, as they very mistakenly do with autism.  
It looks like today at least 25% of kids are now seen as “special”, one way or another, and in the great majority of cases there really is no definitive biological reason why.  All 25% would benefit from special help at school, so no surprise some parents desperately seek out an autism diagnosis.  My son's assistant at school is often asked for help by the non-special kids, who find her notes very helpful and the teachers say to me how some of the non-special kids would benefit from the extra work my special son does regarding spoken and written communication.
Until recent decades you had to be extremely special to get any specific help. If you were deaf or blind you had your own school, often residential.
The 15% of the population with an IQ less than 85, all the people with AD(H)D, autism, bipolar, schizophrenia, dyslexia, dyspraxia, dysphasia, (gender) dysphoria etc should all count as special.
All the people with genetic or metabolic dysfunctions are special, but 99% of the population could not understand the detailed medical explanation of why, unless they are willing to sit down for a few hours and do some homework.
So, I think we should apply the teenage cheerleader’s simple explanation that they are all just special kids. No further explanation needed, unless she is aiming for a PhD, or he is her brother.
Nobody will feel upset if in the next decade psychiatrists define 30% of kids as special. Deep down most people would like to be special in one way or another.

What Kind of Special?
If someone really wants to know what kind of special a person is, that is like asking how a nuclear reactor works; it is possible to answer, but it takes a long time to explain.
Most people really do not want to know how a nuclear reactor works, they just assume that some clever people at the power company do know.
If you really want to know what causes a particular person’s severe autism, you will soon realize how dumb it is to use the word “autism” as a medical diagnosis.
Consider those dendritic spines that make a connection between neurons in the brain. The only thing different genetic autisms have in common is that they all vary from normal/typical, but they vary in all possible ways - too many/few spines, or just the “wrong” shape.

Typical dendritic spine (in grey) vs 5 "genetic" autisms 

Accept that 90% of people are not interested                   
Most people really are not interested in a “special” variation that does not affect them. Many such variations are very complicated to understand and so well-intentioned raising awareness may not be helping.  Just repeating the name of the disorder does little to explain it; it just means more people have heard of it.
My elder son recently asked his Grandparents what they would do if he had been gay. He knows that for them gay is even “worse” than autism. In fact, when going to study abroad one of the tips he received was to stay away from gay people.
I think the Grandparents would also have said stay away from autistic people, but now they have got to know one, and it is not so bad.  Even so, they do not themselves want to see other autistic people.
Creating this large “special” category has many advantages, everyone will almost inevitably already know someone who is “special”.
In our superficial world, where everyone seems to have an opinion on just about everything, regardless of whether they understand it, just keep it cheerleader simple, “special” is the way to go.






Thursday, 24 January 2019

Cheap common drugs may help mental illness










Stockholm, Sweden

When most people think of Sweden, they probably think of Volvo cars, now actually Chinese, and Ikea.  Today you will have to add keeping detailed centralized medical records to the list.
Today’s study included 142,691 individuals from the entire population of Sweden with a diagnosis of bipolar disorder (BPD), schizophrenia (SCZ), or nonaffective psychosis (NAP) who were 15 years or older and who were treated with psychiatric medication from October 1, 2005, through December 31, 2016. 
It is relevant to readers of this blog because it shows that some of the same cheap generic drugs written about in this blog to modify aspects of autistic brain function do indeed show up as beneficial to those Swedes, with BPP, SCZ or NAP, who had by chance been prescribed those drugs for other reasons.
Numerous genetic studies have shown that the genes miss-expressed in autism overlap with those miss-expressed in bipolar (BPD) and schizophrenia (SCZ).
Clearly some people will get upset about autism (AUT) being called a mental illness. Whatever you choose to call SCZ and BPD you really need to apply to AUT, they are clearly just 3 overlapping clusters of gene miss-expression.
The study was summed up nicely in this BBC article.


Cheap and widely used drugs for diabetes and heart health have potential for treating severe mental illness, a study hints.
It showed the number of times patients needed hospital treatment fell by up to a fifth when they took the drugs.
The researchers at University College London say their findings have "enormous potential".
But they, and independent experts, say the results now need to be tested in clinical trials.
The starting point for the researchers was a list of currently prescribed medications that science predicts could also help patients with severe mental health disorders.
The team focused on:
§  anti-cholesterol drugs called statins - which may calm inflammation linked to mental health problems or help the body absorb anti-psychotic medications
§  blood pressure drugs - which may alter the calcium signalling in the brain that has been linked to bipolar disorder and schizophrenia
§  type 2 diabetes drug metformin - which may alter mood
But rather than test them in trials, the scientists went looking for evidence in the real world.
   
The press release from the lead author, who is at University College London



The full paper



Key Points

Question  Are drugs in common use for physical health problems (hydroxylmethyl glutaryl coenzyme A reductase inhibitors, L-type calcium channel antagonists, and biguanides) associated with reduced rates of psychiatric hospitalization and self-harm in individuals with serious mental illness?
Findings  In this series of within-individual cohort studies of 142 691 patients with bipolar disorder, schizophrenia, or nonaffective psychosis, exposure to any of the study drugs was associated with reduced rates of psychiatric hospitalizaiton compared with unexposed periods. Self-harm was reduced in patients with bipolar disorder and schizophrenia during exposure to all study drugs and in patients with nonaffective psychosis taking L-type calcium channel antagonists.
Meaning  Hydroxylmethyl glutaryl coenzyme A reductase inhibitors, L-type calcium channel antagonists, and biguanides hold potential as repurposed agents in serious mental illness, and the central nervous system mechanism of action of these drugs requires further investigation.
Abstract 
Importance  Drug repurposing is potentially cost-effective, low risk, and necessary in psychiatric drug development. The availability of large, routine data sets provides the opportunity to evaluate the potential for currently used medication to benefit people with serious mental illness (SMI).
Objective  To determine whether hydroxylmethyl glutaryl coenzyme A reductase inhibitors (HMG-CoA RIs), L-type calcium channel (LTCC) antagonists, and biguanides are associated with reduced psychiatric hospitalization and self-harm in individuals with SMI.
Design, Setting, and Participants  These within-individual cohort studies of patients with SMI compared rates of psychiatric hospitalization and self-harm during periods of exposure and nonexposure to the study drugs, with adjusting for a number of time-varying covariates. Participants included 142 691 individuals from the entire population of Sweden with a diagnosis of bipolar disorder (BPD), schizophrenia, or nonaffective psychosis (NAP) who were 15 years or older and who were treated with psychiatric medication from October 1, 2005, through December 31, 2016. Data were analyzed from April 1 through August 31, 2018.
Interventions  Treatment with HMG-CoA RIs, LTCC antagonists, or biguanides.
Main Outcomes and Measures  Psychiatric hospitalizations and self-harm admissions.
Results  Among the 142 691 eligible participants, the HMG-CoA RI exposure periods were associated with reduced rates of psychiatric hospitalization in BPD (adjusted hazard ratio [aHR], 0.86; 95% CI, 0.83-0.89; P < .001), schizophrenia (aHR, 0.75; 95% CI, 0.71-0.79; P < .001), and NAP (aHR, 0.80; 95% CI, 0.75-0.85; P < .001) and reduced self-harm rates in BPD (aHR, 0.76; 95% CI, 0.66-0.86; P < .001) and schizophrenia (aHR, 0.58; 95% CI, 0.45-0.74; P < .001). Exposure to LTCC antagonists was associated with reduced rates of psychiatric hospitalization and self-harm in subgroups with BPD (aHRs, 0.92 [95% CI, 0.88-0.96; P < .001] and 0.81 [95% CI, 0.68-0.95; P = .01], respectively), schizophrenia (aHRs, 0.80 [95% CI, 0.74-0.85; P < .001] and 0.30 [95% CI, 0.18-0.48; P < .001], respectively), and NAP (aHRs, 0.89 [95% CI, 0.83-0.96; P = .002] and 0.56 [95% CI, 0.42-0.74; P < .001], respectively). During biguanide exposure, psychiatric hospitalization rates were reduced in subgroups with BPD (aHR, 0.80; 95% CI, 0.77-0.84; P < .001), schizophrenia (aHR, 0.73; 95% CI, 0.69-0.77; P < .001), and NAP (aHR, 0.85; 95% CI, 0.79-0.92; P < .001), and self-harm was reduced in BPD (aHR, 0.73; 95% CI, 0.62-0.84; P < .001) and schizophrenia (aHR, 0.64; 95% CI, 0.48-0.85; P < .001.
Conclusions and Relevance  This study provides additional evidence that exposure to HMG-CoA RIs, LTCC antagonists, and biguanides might lead to improved outcomes for individuals with SMI. Given the well-known adverse event profiles of these agents, they should be further investigated as repurposed agents for psychiatric symptoms.

Conclusion
If you are trying to convince your GP to prescribe some drugs off-label for autism, this study may help you convince him/her.
If your spouse, or other family members, think treating autism is folly, they might also benefit from reading about this study. 

The very old drug Metformin, used to treat type 2 diabetes has been mentioned many times in this blog and in today's study it was suggested to alter mood.  For severe autism mood is often not such a big issue, but for some mild autism mood is the big issue.
This study again shows how Scandinavian medicine collects a great deal of very usable data, in a recent post we saw something similar from Denmark. This is an example of socialized medicine at its best. I suppose the English lead author could not gather equivalent data in his home country.






Tuesday, 15 January 2019

More Myelin? Or just Better Myelination - Intelligence, PDE4 and Clemastine again




Myelination in the Central Nervous System (CNS)                  Oligodendrocyte myelinating multiple axons

The previous post on myelin was this one.


In that post we saw that you can activate P2X7 receptors with an antihistamine called Clemastine and you can block P2X7 with another cheap antihistamine called Oxatomide. The P2X7 receptor plays a role in both inflammation and myelination and this receptor appears to be linked to neurological disorders including schizophrenia and even depression.
In that post I also compared experimental MS therapies with experimental autism therapies.




The yellow box means, we know it works, at least for some people, based on trial results.

The widely available PDE4 inhibitor, Roflumilast, has been patented as a cognitive enhancer, but even at that lower dose it can make people vomit.  Ibudilast seems to have fewer side effects and is under investigation in the US to treat MS, but is currently only approved in Japan and as an asthma therapy.
The logical next step is to investigate the two P2X7 modifying antihistamines, which should have opposing effects.
Oxatomide is widely used in Italy. Clemastine is OTC in the US and the UK.
I did some more investigation of Clemastine and came across some encouraging reports of off-label use in psychiatry at modest doses. Off label use to treat MS at high doses was associated with quite negative reports, due to the sedating effect, which is inevitable with antihistamines that can cross the blood brain barrier.
Today’s post goes into more detail about myelination and concludes with the open question of who might actually benefit from a half dose of clemastine, (Dayhist in the US, Tavegil in the UK); clearly some people do already benefit. 
At least one US child psychiatrist is a fan and the research suggests many conditions might benefit, ranging from severe to more trivial.  At 15-20 times higher dosage, clemastine is proposed as a therapy for Multiple Sclerosis (MS), but at that dosage clemastine is highly sedating. High dose clemastine might be a potential immediate response to the onset of regression in autism and CDD (Childhood Disintegrative Disorder).
Clemastine and Ibudilast have different modes of action. Clemastine works by activating P2X7 receptors in oligodendrocytes (in the CNS) and schwann cells (in the PNS) to make more myelin.
PDE4 inhibitors cause enhanced differentiation of OPCs (oligodendrocyte progenitor cells). OPC are precursors to oligodendrocytes.
So Roflumilast and Ibudilast should make more oligodendrocytes, while clemastine just kicks the ones you already have to work harder.  So in any one person the effect of these two types of drug may very well differ. 
Also, note that myelin needs to be constantly repaired in a process naturally called remyelination. So really we are just trying to benefit from improving this already existing repair service.

Some relevant background information:



“Myelination is only prevalent in a few brain regions at birth and continues into adulthood. The entire process is not complete until about 25–30 years of age. Myelination is an important component of intelligence. Neuroscientist Vincent J. Schmithorst proposes that there is a correlation with white matter and intelligence. People with greater white matter had higher IQs. A study done with rats by Janice M. Juraska showed that rats that were raised in an enriched environment had more myelination in their corpus callosum. 
In cerebral palsy, spinal cord injury, stroke and possibly multiple sclerosis, oligodendrocytes are thought to be damaged by excessive release of the neurotransmitter, glutamate. Damage has also been shown to be mediated by N-methyl-D-aspartate receptors. Oligodendrocyte dysfunction may also be implicated in the pathophysiology of schizophrenia and bipolar disorder.”

The role of myelin
Myelin has been compared to the insulation on electrical cables.  If only it was that simple, there would not be so many genes involved in the process.

Nodes of Ranvier do matter
If you look at the above graphic of a neuron you will see gaps in the myelin, that are called Nodes of Ranvier.
The electrical signal does not pass along the axon like a piece of copper wire, rather it jumps from one Node of Ranvier to the next, in a process called saltatory conduction.
Also each subsequent piece of myelin along the length of an axon is connected to a different oligodendrocyte. Otherwise there would be no electrical conduction possible; there has to be a “potential difference” for a current to flow.
Each oligodendrocyte can be connected to 50 different pieces of myelin, many on different axons. Just imagine what that looks like; forget the spaghetti of cables connected to your TV, this is something really jumbled up.
If the electrical signal jumps to an adjacent axon rather than jumping along the same axon, there will be a problem.
If there is too much myelin produced you might squeeze out the node of Ranvier and then the signal cannot pass along to the next neuron.



Myelination Defects in Autism
We have already seen in previous posts that myelination is often found to be abnormal in autism.
A very thorough recent study looked at myelination in a number of single gene autisms. The conclusion was that in these very different types of autism there was a common theme of defective myelination.
This adds further weight to the idea of considering impaired myelination a key feature of much autism.
Loss of myelination has been suggested to be a core feature of regressive autism and I propose a very likely driver of Childhood Disintegrative Disorder (CDD).
“Improving myelination” rather than simply “more myelination” might well be very helpful to many types of severe autism. It seems that even in much milder neurological conditions improving myelination can be therapeutic.
The usual target of experimental myelination therapies is Multiple Sclerosis (MS), it may also be the hardest to treat.
Some researchers and clinicians are repurposing MS therapies for other neurological disorders, either in mouse models or in humans.  This seems like a very good idea to me. 

One Sentence Summary: RNA sequencing of seven syndromic autism mouse models identify myelination genes disrupted in human ASD.

Autism Spectrum Disorder (ASD) is genetically heterogeneous in nature with convergent symptomatology, suggesting dysregulation of common molecular pathways. We analyzed transcriptional changes in the brains of five independent mouse models of Pitt-Hopkins Syndrome (PTHS), a syndromic ASD caused by autosomal dominant mutation in TCF4, and identified considerable overlap in differentially expressed genes (DEGs). Gene and cell-type enrichment analyses of these DEGs identified oligodendrocyte dysregulation that was subsequently validated by decreased protein levels. We further showed significant enrichment of myelination genes was prevalent in two additional mouse models of ASD (Ptenm3m4/m3m4, Mecp2KO). Moreover, we integrated syndromic ASD mouse model DEGs with ASD risk-gene sets (SFARI) and human idiopathic ASD postmortem brain RNA-seq and found significant enrichment of overlapping DEGs and common biological pathways associated with myelination and oligodendrocyte differentiation. These results from seven independent mouse models are validated in human brain, implicating disruptions in myelination is a common ASD pathophysiology.

To address these questions, we performed integrative transcriptomic analyses of seven independent mouse models of three syndromic forms of ASD generated across five laboratories, and assessed dysregulated genes and their pathways in human postmortem brain from patients with ASD and unaffected controls. These cross-species analyses converged on shared disruptions in myelination and axon development across both syndromic and idiopathic ASD, highlighting both the face validity of mouse models for these disorders and identifying novel convergent molecular phenotypes amendable to rescue with therapeutics. 

Shared myelination gene regulation between mouse models of syndromic ASD. Venn diagram of DEGs (differentially expressed genes) in each mouse model of ASD




Top GO (Gene ontology) terms of the CAGs (convergent ASD genes) enrich for myelination processes



P2X purinoceptor 7 is a protein that in humans is encoded by the P2RX7 gene.

The product of this gene belongs to the family of purinoceptors for ATP. Multiple alternatively spliced variants which would encode different isoforms have been identified although some fit nonsense-mediated decay criteria.
The receptor is found in the central and peripheral nervous systems, in microglia, in macrophages, in uterine endometrium, and in the retina. The P2X7 receptor also serves as a pattern recognition receptor for extracellular ATP-mediated apoptotic cell death, regulation of receptor trafficking, mast cell degranulation, and inflammation.


Our findings point to P2X7R as a potential therapeutic target in schizophrenia.


The P2X7 purinergic receptor: An emerging therapeutic target in cardiovascular diseases

The P2X7 purinergic receptor, a calcium permeable cationic channel, is activated by extracellular ATP. Most studies show that P2X7 receptor plays an important role in the nervous system diseases, immune response, osteoporosis and cancer. Mounting evidence indicates that P2X7 receptor is also associated with cardiovascular disease. For example, the P2X7 receptor activated by ATP can attenuate myocardial ischemia-reperfusion injury. By contrast, inhibition of P2X7 receptor decreases arrhythmia after myocardial infarction, prolongs cardiac survival after a long term heart transplant, alleviates the dilated cardiomyopathy and the autoimmune myocarditis process. The P2X7 receptor also mitigates vascular diseases including atherosclerosis, hypertension, thrombosis and diabetic retinopathy. This review focuses on the latest research on the role and therapeutic potential of P2X7 receptor in cardiovascular diseases.

Clemastine is an extracellularly binding allosteric P2X7 receptor modulator.
Clemastine can potentiate the sensitivity of P2X7 to lower ATP concentrations. Additionally, clemastine increases the release of IL-1β from macrophages. Thus, clemastine may be a potential P2X7 activator.

Brain ischemia leading to stroke is a major cause of disability in developed countries. Therapeutic strategies have most commonly focused on protecting neurons from ischemic damage. However, ischemic damage to white matter causes oligodendrocyte death, myelin disruption, and axon dysfunction, and it is partially mediated by glutamate excitotoxicity. We have previously demonstrated that oligodendrocytes express ionotropic purinergic receptors. The objective of this study was to investigate the role of purinergic signaling in white matter ischemia. We show that, in addition to glutamate, enhanced ATP signaling during ischemia is also deleterious to oligodendrocytes and myelin, and impairs white matter function. Thus, ischemic oligodendrocytes in culture display an inward current and cytosolic Ca(2+) overload, which is partially mediated by P2X7 receptors. Indeed, oligodendrocytes release ATP after oxygen and glucose deprivation through the opening of pannexin hemichannels. Consistently, ischemia-induced mitochondrial depolarization as well as oxidative stress culminating in cell death are partially reversed by P2X7 receptor antagonists, by the ATP degrading enzyme apyrase and by blockers of pannexin hemichannels. In turn, ischemic damage in isolated optic nerves, which share the properties of brain white matter, is greatly attenuated by all these drugs. Ultrastructural analysis and electrophysiological recordings demonstrated that P2X7 antagonists prevent ischemic damage to oligodendrocytes and myelin, and improved action potential recovery after ischemia. These data indicate that ATP released during ischemia and the subsequent activation of P2X7 receptor is critical to white matter demise during stroke and point to this receptor type as a therapeutic target to limit tissue damage in cerebrovascular diseases.

Clemastine as a practical intervention
I came across a discussion among MS sufferers and a specific comment from a US child psychiatrist that drew my attention.


Daniel Kerlinsky says:   september 1 1, 2018 at 123 AM

Clemastine is a highly effective medication for re-myelination of white matter fiber bundles that connect neurons everywhere in the brain.
High doses aren't needed. One quarter of a 2.68 mg tablet is enough to start recruiting new oligodendrocytes to start making and applying myelin.
It does not have to be taken every day; it can be taken twice a week and still have a positive effect by recruiting the worker cells that repair the brain.
Remember normal myelination starts at the top of the brain and works downward during childhood development. At first the baby can't hold its head up, then it can sit up, then crawl, then stand.
Many MS lesions are located further down inside the brain and spinal cord so it takes time to get there.
The anti-inflammatory Minocycline taken once or twice a week is needed to stop the inflammatory part of the disease.                                                                            
And it takes cranio-sacral therapy to take full advantage of the new myelin which plumps the brain and even lubricates stiff joints like the sphenoid-occipital junction.
Don't give up on clemastine.

Its first and most obvious effect is improved emotional self regulation. Because myelination increases the speed of information processing ten-fold you will notice that thinking better comes next.
I can't tell you how long it will take to notice a difference. But the MS patient who told me about Clemastine got up out of her electric wheel chair and walked down the hall and back without a walker or her canes for the first time in two years.
It works great for kids with tantrums and developmental problems in about a month. It helps people with chronic depression and PTSD in about three months.
Back your dose down to 1.34 mg or 0.67 mg and give it two years. It takes a toddler that long.„



Increasing evidence suggests that white matter disorders based on myelin sheath impairment may underlie the neuropathological changes in schizophrenia. But it is unknown whether enhancing remyelination is a beneficial approach to schizophrenia. To investigate this hypothesis, we used clemastine, an FDA-approved drug with high potency in promoting oligodendroglial differentiation and myelination, on a cuprizone-induced mouse model of demyelination. The mice exposed to cuprizone (0.2% in chow) for 6 weeks displayed schizophrenia-like behavioral changes, including decreased exploration of the center in the open field test and increased entries into the arms of the Y-maze, as well as evident demyelination in the cortex and corpus callosum. Clemastine treatment was initiated upon cuprizone withdrawal at 10 mg/kg per day for 3 weeks. As expected, myelin repair was greatly enhanced in the demyelinated regions with increased mature oligodendrocytes (APC-positive) and myelin basic protein. More importantly, the clemastine treatment rescued the schizophrenia-like behavioral changes in the open field test and the Y-maze compared to vehicle, suggesting a beneficial effect via promoting myelin repair. Our findings indicate that enhancing remyelination may be a potential therapy for schizophrenia.

Altered myelin structure and oligodendrocyte function have been shown to correlate with cognitive and motor dysfunction and deficits in social behavior. We and others have previously demonstrated that social isolation in mice induced behavioral, transcriptional, and ultrastructural changes in oligodendrocytes of the prefrontal cortex (PFC). However, whether enhancing myelination and oligodendrocyte differentiation could be beneficial in reversing such changes remains unexplored. To test this hypothesis, we orally administered clemastine, an antimuscarinic compound that has been shown to enhance oligodendrocyte differentiation and myelination in vitro, for 2 weeks in adult mice following social isolation. Clemastine successfully reversed social avoidance behavior in mice undergoing prolonged social isolation. Impaired myelination was rescued by oral clemastine treatment, and was associated with enhanced oligodendrocyte progenitor differentiation and epigenetic changes. Clemastine induced higher levels of repressive histone methylation (H3K9me3), a marker for heterochromatin, in oligodendrocytes, but not neurons, of the PFC. This was consistent with the capability of clemastine in elevating H3K9 histone methyltransferases activity in cultured primary mouse oligodendrocytes, an effect that could be antagonized by cotreatment with muscarine. Our data suggest that promoting adult myelination is a potential strategy for reversing depressive-like social behavior.

SIGNIFICANCE STATEMENT Oligodendrocyte development and myelination are highly dynamic processes influenced by experience and neuronal activity. However, whether enhancing myelination and oligodendrocyte differentiation is beneficial to treat depressive-like behavior has been unexplored. Mice undergoing prolonged social isolation display impaired myelination in the prefrontal cortex. Clemastine, a Food and Drug Administration-approved antimuscarinic compound that has been shown to enhance myelination under demyelinating conditions, successfully reversed social avoidance behavior in adult socially isolated mice. This was associated with enhanced myelination and oligodendrocyte differentiation in the prefrontal cortex through epigenetic regulation. Thus, enhancing myelination may be a potential means of reversing depressive-like social behavior.



BACKGROUND:

Multiple sclerosis is a degenerative inflammatory disease of the CNS characterised by immune-mediated destruction of myelin and progressive neuroaxonal loss. Myelin in the CNS is a specialised extension of the oligodendrocyte plasma membrane and clemastine fumarate can stimulate differentiation of oligodendrocyte precursor cells in vitro, in animal models, and in human cells. We aimed to analyse the efficacy and safety of clemastine fumarate as a treatment for patients with multiple sclerosis.

METHODS:


We did this single-centre, 150-day, double-blind, randomised, placebo-controlled, crossover trial (ReBUILD) in patients with relapsing multiple sclerosis with chronic demyelinating optic neuropathy on stable immunomodulatory therapy. Patients who fulfilled international panel criteria for diagnosis with disease duration of less than 15 years were eligible. Patients were randomly assigned (1:1) via block randomisation using a random number generator to receive either clemastine fumarate (5·36 mg orally twice daily) for 90 days followed by placebo for 60 days (group 1), or placebo for 90 days followed by clemastine fumarate (5·36 mg orally twice daily) for 60 days (group 2). The primary outcome was shortening of P100 latency delay on full-field, pattern-reversal, visual-evoked potentials. We analysed by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT02040298.

FINDINGS:


Between Jan 1, 2014, and April 11, 2015, we randomly assigned 50 patients to group 1 (n=25) or group 2 (n=25). All patients completed the study. The primary efficacy endpoint was met with clemastine fumarate treatment, which reduced the latency delay by 1·7 ms/eye (95% CI 0·5-2·9; p=0·0048) when analysing the trial as a crossover. Clemastine fumarate treatment was associated with fatigue, but no serious adverse events were reported.

INTERPRETATION:


To our knowledge, this is the first randomised controlled trial to document efficacy of a remyelinating drug for the treatment of chronic demyelinating injury in multiple sclerosis. Our findings suggest that myelin repair can be achieved even following prolonged damage.



Drug: Clemastine

12mg (4mg 3x/day) clemastine for 7 days followed by 8mg clemastine (4mg 2x/day) until 3 months. Patients will be off treatment from 3-9 months and will be reevaluated at 9 months.



Conclusion
Hopefully this post takes us one step closer to finding safe, side effect free, inexpensive ways to improve myelination in those with impaired myelination.

In the case of treating Multiple Sclerosis (MS), side effects clearly remain an issue. The suggestion of the psychiatrist in today’s post is to just lower the clemastine dosage and give it some time (2 years).  That sounds like smart advice to me.
Fortunately, it appears that in less severe cases of impaired myelination you may not need to wait 2 years.

Who exactly is going to benefit remains an open question, but for people already using H1 antihistamines to treat allergy, or other mast cell activation, switching to a different OTC antihistamine drug does not look like such a big step to take.
People with schizophrenia and allergy also might want to consider switching their antihistamine.

Undoubtedly some people will have the opposite issue with P2X7 receptors and for them there is another old antihistamine drug called Oxatomide.