UA-45667900-1

Wednesday, 20 March 2024

Monty in Montevideo and Recent Advances in Autism Research



It is nice to have a city named after you and Monty finally visited “his” city, Montevideo in Uruguay.

I suppose my city would be St Petersburg, which I have visited several times.

A really impressive city in Latin America is Buenos Aires; it has a very large central area with beautiful architecture. It enjoyed several decades of great wealth, the “golden age,” when the city was laid out. In 1930 there was a military coup and the party was over. It has been boom and bust ever since.

We visited what they call the Southern Cone of Latin America, which is made up of Argentina, Chile and Uruguay. We went from Buenos Aires all the way down to Tierra del Fuego.

Santiago, the capital of Chile, looks to be booming. It has a small historic centre and everything else is new.

Montevideo was more what I expected, except for the graffiti everywhere which makes it look less safe than it likely is. Uruguay has many beautiful beaches, but until you get away from the vast River Plate estuary (Río de la Plata = river of silt) and to the Atlantic ocean the water is a dirty brown colour.  Monty would not go in the water.

Southern Chile and Argentina have some stunning scenery with volcanoes, mountains and glaciers.  It looks great, but it is no longer the cheap backpacker destination it once was.

 







 



Back to the Autism Research

The highlight from the recent research comes from The RIKEN institute in Japan. It does go some way to explaining why so many people with autism appear to have nothing in their genetic results to explain their condition.

Normally, when you have your state of the art whole genome screening (WGS) the geneticist who interprets the results is looking for mutations in one of the many hundreds of known “autism genes” and nowadays, hopefully, in the non-coding areas next to them. Whole exome screening (WES) just looks at the 2% of the genome that has the instructions for how to make each of your 22,000 genes. The other 98% includes things like promoters that increase activity of a specific gene.

Many people with autism appear to show no mutations that are relevant.

The Japanese have figured out one of the reasons why this is the case. There are other reasons.

Our genetic material is not stored on something like a long role of paper, which is like a two-dimensional object.  It is a three-dimensional twisted object all folded up. As a result, the DNA physically closest to each autism gene may not be the part expected. The Japanese use the term “topologically associating domain” (TAD) to define which zones of DNA are actually interacting with each other.

They found that de novo mutations in promoters heightened the risk of ASD only when the promoters were located in TADs that contained ASD-related genes. Because they are nearby and in the same TAD, these de novo mutations can affect the expression of ASD-related genes.

This means that geneticists now need to go back to school and learn about the TAD of each autism gene. Or else just replace the geneticist with an AI generated report.

 

Mutation butterfly effect: Study reveals how single change triggers autism gene network

Researchers in the RIKEN Center for Brain Science (CBS) examined the genetics of autism spectrum disorder (ASD) by analyzing mutations in the genomes of individuals and their families. They discovered that a special kind of genetic mutation works differently from typical mutations in how it contributes to the condition. In essence, because of the three-dimensional structure of the genome, mutations are able to affect neighboring genes that are linked to ASD, thus explaining why ASD can occur even without direct mutations to ASD-related genes. This study appeared in the scientific journal Cell Genomics on January 26.

The researchers analyzed an extensive dataset of over 5,000 families, making this one of the world's largest genome-wide studies of ASD to date. They focused on TADs-;three-dimensional structures in the genome that allow interactions between different nearby genes and their regulatory elements. They found that de novo mutations in promoters heightened the risk of ASD only when the promoters were located in TADs that contained ASD-related genes. Because they are nearby and in the same TAD, these de novo mutations can affect the expression of ASD-related genes. In this way, the new study explains why mutations can increase the risk of ASD even when they aren't located in protein-coding regions or in the promotors that directly control the expression of ASD-related genes.

 

"Our most important discovery was that de novo mutations in promoter regions of TADs containing known ASD genes are associated with ASD risk, and this is likely mediated through interactions in the three-dimensional structure of the genome."  

Atsushi Takata at RIKEN CBS

 

 

Topologically associating domains define the impact of de novo promoter variants on autism spectrum disorder risk

Whole-genome sequencing (WGS) studies of autism spectrum disorder (ASD) have demonstrated the roles of rare promoter de novo variants (DNVs). However, most promoter DNVs in ASD are not located immediately upstream of known ASD genes. In this study analyzing WGS data of 5,044 ASD probands, 4,095 unaffected siblings, and their parents, we show that promoter DNVs within topologically associating domains (TADs) containing ASD genes are significantly and specifically associated with ASD. An analysis considering TADs as functional units identified specific TADs enriched for promoter DNVs in ASD and indicated that common variants in these regions also confer ASD heritability. Experimental validation using human induced pluripotent stem cells (iPSCs) showed that likely deleterious promoter DNVs in ASD can influence multiple genes within the same TAD, resulting in overall dysregulation of ASD-associated genes. These results highlight the importance of TADs and gene-regulatory mechanisms in better understanding the genetic architecture of ASD.

 

Bumetanide

 

I did come across a Chinese study with an eye-catching title:-

 

Can bumetanide be a miraculous medicine for autism spectrum disorder: Meta-analysis evidence from randomized controlled trials

 

Highlights

    • Bumetanide showed significant and large effects on the overall core symptoms of ASD.
    • Bumetanide’s efficacy on ASD is influenced by subjects’ age, dosage form, duration.
    • Results of RCTs on bumetanide in ASD are moderated by study designs, measurement tools

A systematic search was conducted on PubMed, EMBASE, MEDLINE, PsyclNFO, Web of Science, Clinical Trials.gov, and references in reviews from the earliest available date to September 2023. Randomized controlled trials (RCTs) were identified that evaluated the efficacy of bumetanide in improving overall core symptoms (OCS) of ASD. Therefore, nine studies with 1036 participants were included in the study.

Results

Bumetanide showed significant effects on OCS of ASD (WMD = 1.91, p = 0.006), particularly in sub-domains including relation to inanimate objects, adaption to environment changes, auditory response, near sensory responses, anxiety and hyperactivity. Moderating analysis indicated that a significant effect size of bumetanide on OCS of ASD was observed in specific subgroup, including 3–6 years old (WMD = 1.08, p = 0.008), the tablet (WMD = 2.80, p = 0.003), 3-month intervention (WMD = 2.54, p = 0.003), and the single-center studies (WMD = 2.80, p = 0.003).

Conclusions

Bumetanide has a large and significant impact on the OCS of ASD. Given the limited number and quality of included RCTs, future research should prioritize conducting large-scale trials focusing on sub-parameters or specific clinical features to comprehensively evaluate the efficacy of bumetanide in subpopulations of children with ASD.

Meanwhile, Professor Ben Ari has written another paper on why the phase 3 trial failed and has also published a book.

 

Bumetanide to treat autism spectrum disorders: are complex administrative regulations fit to treat heterogeneous disorders?

Introduction:

Extensive experimental observations suggest that the regulation of ion fluxes and, notably, chloride are impacted in autism spectrum disorders (ASD) and other neurodevelopmental disorders. The specific NKCC1 cotransporter inhibitor Bumetanide has been shown to attenuate electrophysiological and behavioral features of ASD in experimental models. Both pilot and phase 2 double-blind randomized independent trials have validated these effects with thousands of children treated successfully. Both brain imaging and eye tracking observations also validate these observations. However, final large phase 3 trials failed, with no significant differences between placebo and treated children.

Methods:

Here, I discuss the possible reasons for these failures and discuss the exclusive reliance on complex patent cooperation Treaty (PCT) regulations. Indeed, available data suggest that bumetanide responders could be identified by relying notably on EEG measures, suggesting that biological sub-populations of patients might benefit from the treatment.

Results:

These observations raise important debates on whether treating only a % of children with ASD is acceptable.

Discussion:

It is likely that in many disorders, the heterogeneity of the pathological event precludes a single general treatment for all, suggesting that trials centered on selective populations of responders might be essential for large clinical trials to succeed.

  Here is the new book:-

Treating Autism with Bumetanide

https://www.cambridgescholars.com/product/978-1-5275-1890-2/

In spite of its high incidence, extensive media coverage and major clinical burden to families, there is not a single approved European or American drug treatment of Autism Spectrum Disorders (ASDs). The dominant genetic and psychiatric approaches to treat ASDs have various limitations, suggesting that a novel global approach to understand and treat ASDs is warranted. Based on the authors’ converged expertise on brain development, ASD treatment and brain imaging, this book provides a fresh view of the disorder which is validated by experimental imaging and large clinical trials, culminating in the first large phase 3 final pediatric trial (on 400 children in EU countries and the US) using a repositioning of a drug used for decades to treat hypertension and edema. The convergence of experimental and clinical data on this disorder is unprecedented, confirming the potential of the drug to be the first pediatric treatment of ASDs.

After explaining the mechanisms underlying ASDs, we describe specific cases of children who, after treatment, considerably improved their sociability and reduced their agitation. The book also discusses the skepticism that the authors met from the tenants of pure genetics and psychiatry, and why the abyssal poverty of information on developmental disorders has hampered progress in understanding and treating ASD.

 

Bumetanide dosage is key – “wonderful effects from increasing from 0.5mg to 1mg” 

One recuring feature I have noticed from bumetanide use in the United States is the low dosage often used, as if these doctors want to show the drug is ineffective.

A reader recently contacted me about his young son who responded to the low dose of 0.5mg, but his autism doctor would not increase the dose.  The parent took matters into his own hands and increased the dose and then wrote to tell me about the “wonderful effects.”

 

Diuresis has stopped, but restarts at a lower dose

In a minority of cases bumetanide causes no diuresis. The question is whether it can have any effect in the brain if it causes no diuresis. Has the drug been absorbed at all?

One reader contacted me to tell me that her son, who has responded well to bumetanide for several years, stopped experiencing any diuresis. Then she told me that when she reduces the dose the diuresis returns.

There are many possible explanations, but perhaps those people who find bumetanide causes no diuresis should try a lower dose and see what happens.

 

Vasopressin/Desmopressin

Much of the research into the hormone vasopressin comes from Stanford. They have published a string of papers over the years. I think they are definitely on to something, but they are taking their time and may never commercialize the result.  

The very recent one is:

Vasopressin deficiency: a hypothesized driver of both social impairment and fluid imbalance in autism spectrum disorder

 

For some reason there is no abstract. 

Thanks to our reader Seth, I have now added the link below that takes you directly to  Stanford's website, which holds the full text version of the paper. 

https://med.stanford.edu/content/dam/sm/parkerlab/documents/da035ad7-7c80-41bd-a9a6-ee03a8bcc58d.pdf


The same group previously published a paper showing that people with ASD have a reduced level of vasopressin in their spinal fluid. As you can see in the chart below the level of oxytocin was normal.

There have also been successful trials using intranasal vasopressin in humans.


Cerebrospinal fluid vasopressin and symptom severity in children with autism

 



Vasopressin and oxytocin are closely related hormones and possibly some interactions are not yet fully understood.

Both these hormones can be given via a nasal spray.

 

The Bumetanide-Vasopressin interaction

Under normal circumstances you would never combine vasopressin with a diuretic.

Vasopressin stops you peeing and that it is why it is given to some children who wet their bed at night.

Bumetanide is a fast-acting diuretic that causes you to pee a lot.

So if you gave a diuretic to an elderly overweight person to reduce their blood pressure, it would be mad to also prescribe vasopressin.  The drugs are therefore contraindicated.

In autism we do not actually want the diuretic effects of bumetanide. We just want its effects on the brain.

The social and emotional beneficial effects of vasopressin have already been established by the existing Stanford research.

The combined effects of bumetanide + intranasal vasopressin might then be a win-win. Less autism and without the diuresis.

I was contacted long ago by a father whose daughter was prescribed Desmopressin, a synthetic analog of vasopressin that is an approved drug, and her autism markedly improved.

The Stanford research in humans uses a nasal spray that they have compounded specially rather than the commercially available Desmopressin.

 

 



Friday, 19 January 2024

Cerebral Folate Deficiency – increasing cerebral folate without increasing plasma/blood folate, via activating the reduced folate carrier (RFC)

 


Source: https://autism.fratnow.com/blog/folate-transport-systems-i-transmembrane-carriers/


Two readers of this blog have been telling me about the fundamental role of brain energy and metabolism in autism. Marco sent me a book called Brain Energy by a psychiatrist at the Harvard Medical School. He stumbled upon this subject when he encouraged a patient to lose weight using the ketogenic diet. As well as losing weight, the patient’s decades-long psychiatric disorders seemed to vanish. The author, Dr Palmer, now believes that many of his patients actually have metabolic disorders as the underlying basis of their psychiatric symptoms. 

Our reader Natasa is approaching with a similar idea, essentially that autism features a brain running on empty.

Today’s post is about increasing the level of folate within the brain, by targeting similar metabolic pathways to those that will boost “brain energy.”

Low levels of folate within the brain will cause varying degrees of neurological disorder.

There are three ways folate can cross into the brain.

1.     Folate receptor alpha (FRA)

2.     Proton-coupled folate transporter (PCFT)

3.     Reduced folate carrier (RFC)

Autoantibodies to the FRA have been linked to neurodevelopmental diseases, particularly cerebral folate deficiency, schizophrenia and autism. Recent studies have shown that these neurodevelopmental disorders can be treated with folinic acid (leucovorin).

Dr Frye, Professor Ramaekers and others are targeting the problem of low folate in the brain by supercharging the level of folate in the bloodstream and hoping more squeezes through the blood brain barrier.

In my previous post I mentioned that Agnieszka has pointed out the idea of using the supplement PQQ. This targets the third transport mechanism above, it is aiming to get more folate across via  the Reduced Folate Carrier (RFC).

Somebody recently wrote their PhD thesis on exactly this topic:- 

Regulation of Folate Transport at the Blood-Brain Barrier: A Novel Strategy for the Treatment of Childhood Neurological Disorders Associated with Cerebral Folate Deficiency

Camille Alam, Department of Pharmaceutical Sciences, University of Toronto 

Additionally, we provided in vitro and in vivo evidence that RFC expression and transport activity is inducible by another transcription factor, NRF-1. These findings demonstrate that augmenting RFC functional expression through interaction with specific transcription factors could constitute a novel strategy for enhancing brain folate delivery. Modulating folate uptake at the BBB may have clinical significance due to the lack of established optimal therapy for neurometabolic disorders caused by loss of FRα or PCFT function. 

What Camille is saying is that if folate transport mechanism number 1 and/or number 2 are not working, we can reinvigorate mechanism number 3.

So if you have Dr Frye’s folate receptor antibodies, or PCFT isn’t working then you might focus on Reduced Folate Carrier (RFC).

The good news is that we have lots of ways to target Reduced Folate Carrier (RFC).

We do not, it seems, have any clever ways to target PCFT. 

NRF-1 and PGC1-alpha

There is a lot in this blog about PGC1-alpha, because it is the master regulator for biogenesis of mitochondria.

All those people with impaired “brain energy” would love to activate PGC1-alpha.

NRF-1 is an activator of mitochondrial respiratory chain genes. NRF-1 specifically targets genes encoding subunits of the mitochondrial respiratory chain complexes, particularly complexes I, III, and IV. By binding to their promoters, NRF-1 directly stimulates their transcription, leading to increased synthesis of these critical protein components and enhanced oxidative phosphorylation (OXPHOS) capacity.

Synergy between NRF-1 and PGC-1alpha

PGC-1alpha acts as the upstream regulator. Various stimuli, such as exercise, cold exposure, and certain hormones, can trigger PGC-1alpha expression. Once activated, PGC-1alpha directly interacts with and co-activates NRF-1, enhancing its binding to target gene promoters and amplifying its transcriptional activity.

NRF-1 as the downstream effector.  NRF-1 fine-tunes the expression of specific mitochondrial genes, ensuring a balanced and efficient OXPHOS system. This synergy between PGC-1alpha and NRF-1 optimizes mitochondrial function and cellular energy production.

So for Natasa, trying to boost energy production in the brain and in the rest of the body, it would be ideal to have more NRF-1 and more PGC-1alpha

What has optimized mitochondrial function got to do with more folate in the brain?

It turns out that you can increase expression of Reduced Folate Carrier (RFC) via activating NRF-1 and/or PGC1alpha.

So what is good for your brain energy is likely to also be good for your brain folate.

Nuclear respiratory factor 1 (NRF-1) upregulates the expression and function of reduced folate carrier (RFC) at the blood-brain barrier

Folates are important for neurodevelopment and cognitive function. Folate transport across biological membranes is mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Brain folate transport primarily occurs at the choroid plexus through FRα and PCFT; inactivation of these transport systems results in suboptimal folate levels in the cerebrospinal fluid (CSF) causing childhood neurological disorders. Our group has reported that upregulation of RFC at the blood-brain barrier (BBB) through interactions with specific transcription factors, that is, vitamin D receptor (VDR) could increase brain folate delivery. This study investigates the role of nuclear respiratory factor 1 (NRF-1) in the regulation of RFC at the BBB. Activation of NRF-1/PGC-1α signaling through treatment with its specific ligand, pyrroloquinoline quinone (PQQ), significantly induced RFC expression and transport activity in hCMEC/D3 cells. In contrast, transfection with NRF-1 or PGC-1α targeting siRNA downregulated RFC functional expression in the same cell system. Applying chromatin immunoprecipitation (ChIP) assay, we further demonstrated that PQQ treatment increased NRF-1 binding to putative NRF-1 binding sites within the SLC19A1 promoter, which encodes for RFC. Additionally, in vivo treatment of wild type mice with PQQ-induced RFC expression in isolated mouse brain capillaries. Together, these findings demonstrate that NRF-1/PGC-1α activation by PQQ upregulates RFC functional expression at the BBB and could potentially enhance brain folate uptake.

The hugely simple intervention mentioned above is to just take vitamin D. This has nothing to do with brain energy.

Upregulation of reduced folate carrier by vitamin D enhances brain folate uptake in mice lacking folate receptor alpha

Folates are critical for brain development and function. Abnormalities in brain folate transport have been implicated in a number of childhood neurodevelopmental disorders, including cerebral folate deficiency syndrome, hereditary folate malabsorption, and autism spectrum disorders. These disorders have devastating effects in young children, and current therapeutic approaches are not sufficiently effective. In this study, we demonstrate that functional expression of the folate transporter, reduced folate carrier, at the blood–brain barrier and its upregulation by the vitamin D nuclear receptor can remarkably increase folate transport to the brain. These findings provide a strategy for enhancing brain folate delivery for the treatment of neurometabolic disorders caused by folate transport defects.

 Low vitamin D correlates with poor health, dementia, and death from all causes

Taking vitamin D has become popular in recent years.

A correlation does not guarantee causality.  It was thought that vitamin D might be the silver bullet to improved health in older people. It has not proved to be.

Low vitamin D also correlates with less time outdoors, doing some physical activity. Taking vitamin D does not mean you will live longer, but we know for sure that exercise improves many medical concerns that will improve healthy life expectancy.

The concern many people now have regarding skin cancer leads to some healthy active people having low vitamin D. Put on that sunscreen and your exposed skin will not be able to produce your vitamin D.

Vitamin D is important to health and is easy to maintain in the normal range, but it is just one element of good health. It might be one way to increase folate in the brain, for those who need it. 

 

Conclusion

How do you increase folate in the brain?

The obvious way is to put more folate in your blood, this is the standard therapy. You either take calcium folinate tablets or, very rarely, the more potent infusions.

If you have antibodies blocking transport via FRA, you could follow the hypothesis that these antibodies are from a reaction to cow’s milk and try going dairy-free. There is a complex relationship between milk and folate receptor alpha antibodies (FRAA), but direct evidence of milk causing FRAA production is limited.

Milk, particularly cow's milk, contains proteins similar to folate receptor alpha found in humans. Some individuals, mainly those with a genetic predisposition, could develop FRAA that cross-react with these milk proteins. This cross-reactivity would not necessarily mean the milk directly caused FRAA production but might trigger an existing immune response. Some studies, though not all, have found an association between higher milk consumption and increased FRAA levels.

If you want to increase folate transport via our third mechanism, Reduced Folate Carrier (RFC) you have many options:

The obvious first step is to take a vitamin D supplement to raise levels to the high end of normal. This can be done by taking a larger supplement just once a week, because vitamin D has a long half-life.

As you can see from the study below in children there is a correlation between low vitamin D and low folate in children.

 

Evaluation of correlation between vitamin D with vitamin B12 and folate in children

The present study reported a positive correlation between vitamin D and vitamin B12 and folate levels. Regular measurement of these two micronutrient levels in children with vitamin D deficiency is important for public health.

Vitamin D is low in much of the population, even more so in wintertime. It seems particularly low in children with autism, perhaps because they are spending less time playing outside than other children.


Activate NRF-1 and/or PGC1alpha:

1.     Exercise, particularly endurance training

2.     PQQ supplement

3.     Perhaps resveratrol/pterostilbene

4.     Butyric acid / sodium butyrate

5.     The very safe old drug Metformin

6.     Other type 2 diabetes drugs like Pioglitazone

Metformin has been shown to raise IQ in Fragile-X by about 10 points and has a range of metabolic benefits and even cancer preventative effects. This common diabetes medication primarily targets AMPK, an energy sensor molecule upstream of PGC-1alpha. By activating AMPK, metformin indirectly stimulates PGC-1alpha and subsequently NRF1, leading to enhanced mitochondrial function.

Pioglitazone has been researched in autism and is my choice for peak risk spring/summer aggression and self-injury. Pioglitazone can potentially upregulate PGC-1alpha expression through several pathways:

                    Pioglitazone activates AMPK, an important energy sensor molecule. AMPK can then stimulate PGC-1alpha expression through various signaling pathways.

                    Pioglitazone activates PPAR-gamma and PPAR-gamma directly interacts with PGC-1alpha, potentially increasing its activity.

I think Metformin has a better safety profile than Pioglitazone and so better for every day use.

Butyric acid does have the potential to activate PGC-1alpha. Butyric acid is produced in the gut by fermentation. You need “good” bacteria and fiber. People with healthy diet naturally produce it. You can also buy it as a supplement (sodium butyrate) since it has numerous benefits – everything from gut health, bone health to a tight blood brain barrier.

According to a doctor I was talking to recently, nobody wants to hear that exercise is a key part of health. It is free and the side effects are generally all good ones. Endurance exercise will boost NRF1 and PGC1alpha. Many people with autism are overweight, often due to the psychiatric drugs they have been put on.

Sirtuin activators boost NRF1 and PGC1 alpha. There are drugs and foods which can do this, but a potent way is through exercise.

I hope Dr Frye is checking his patients’ vitamin D levels and supplementing to the safe upper limit.

Those taking I/V calcium folinate might want to look at the more potent ways to activate NRF1 and/or PGC1alpha.

 



Thursday, 11 January 2024

Mutations in CACNA2D1 plus KDM6B -- Gabapentin and Calcium Folinate? Perhaps PQQ? Perhaps BHB?

 


A little research can sometimes be eye opening


I was recently sent genetic results from several parents and surprisingly some have multiple potentially highly causal genes. Some are mutations that are extremely rare and one was unique.

Today I am looking at one case with two genes highlighted in whole exome sequencing (WES), one is a calcium ion channel and the other is a gene extremely close to the one causing Kabuki syndrome.  Interestingly, two possible interventions did very quickly appear.

The report states:

UNCLEAR RESULT

Variants of uncertain significance (VUS) identified

Based on current evidence, the clinical relevance of the detected variants remains unclear.

Kabuki syndrome is caused by mutations in KMT2D or KDM6A.

KDM6A and today’s gene KDM6B both target trimethylation on lysine 27 of histone H3 (H3K27me3), a mark associated with gene silencing. By removing this mark, they activate gene expression. So, mutations in either gene will cause a cascade of effects on numerous other genes.

The old post below suggested the use of HDAC inhibitors to correct the mis expressed genes. In particular, BHB from the ketogenic diet was discussed.

Notably, histone deacetylase inhibition rescued structural and functional brain deficits in a mouse model of Kabuki syndrome.

 

Ketones and Autism Part 5 - BHB, Histone Acetylation Modification, BDNF Expression, PKA, PKB/Akt, Microglial Ramification, Depression and Kabuki Syndrome

           


The calcium channel involved today is not one we have previously looked at, but it is the target of the very well-known drug Gabapentin. This drug is used to treat epilepsy and neuropathic pain. The child does have abnormal EEG and seizures, plus autism, ADHD and absent speech.

Mutations of the KDM6B causing autism were first described only in 2019. In 2022 mutations in this gene were found in several patients with cerebral folate deficiency (CFD), one of the authors is our old friend Dr Ramaekers.

We know a lot about CFD, thanks to our reader Roger, Dr Frye, Dr Ramaekers, and now Agnieszka and Stephen. Over in the US one of the founders of an autism organisation told me her son was diagnosed in adulthood with CFD, when he finally had a spinal tap.

Interestingly, Agnieszka has pointed out a novel way to potentially increase folate in the brain using an OTC supplement called PQQ.

 

Protective effects of pyrroloquinoline quinone in brain folate deficiency


Results

Folate deficiency resulted in increased expression of inflammatory and oxidative stress markers in vitro and in vivo, with increased cellular ROS levels observed in mixed glial cells as well as a reduction of mitochondrial DNA (mtDNA) content observed in FD mixed glial cells. PQQ treatment was able to reverse these changes, while increasing RFC expression through activation of the PGC-1α/NRF-1 signaling pathway.

Conclusion

These results demonstrate the effects of brain folate deficiency, which may contribute to the neurological deficits commonly seen in disorders of CFD. PQQ may represent a novel treatment strategy for disorders associated with CFD, as it can increase folate uptake, while in parallel reversing many abnormalities that arise with brain folate deficiency.

 

PQQ is a relatively common OTC supplement that looks helpful in older people and those with mitochondrial dysfunctions (most older people, plus many with autism).  It can also improve sleep.  The common 20mg dose seems to be based on what was used in a clinical trial in Japanese adults. Japanese drugs are dosed to reflect the size of Japanese people. American women on average weigh 40% more than Japanese women.

PQQ is present in mother’s milk, so it is not some scary artificial compound.

CFD looks like another nexus point where may different genetic variants produce a downstream meeting point.  This means numerous different underlying autisms will share a common beneficial therapy. It will not be a cure, but it should improve the outcome.

The only way to access I/V calcium folinate looks to be via confirmation of very low levels in spinal fluid, so a spinal tap would be necessary.  This is not easy, as Agnieszka has found out.  For some people oral calcium folinate is not sufficiently potent to reverse CFD.


KDM6B

Mutations of the KDM6B gene causing autism were first described only in 2019. In 2022 mutations in this gene were found in several patients with cerebral folate deficiency (CFD).

 

Genetic variants in the KDM6B gene are associated with neurodevelopmental delays and dysmorphic features

Lysine-specific demethylase 6B KDM6B demethylates trimethylated lysine-27 on histone H3. The methylation and demethylation of histone proteins affects gene expression during development. Pathogenic alterations in histone lysine methylation and demethylation genes have been associated with multiple neurodevelopmental disorders. We have identified a number of de novo alterations in the KDM6B gene via whole exome sequencing (WES) in a cohort of 12 unrelated patients with developmental delay, intellectual disability, dysmorphic facial features, and other clinical findings. Our findings will allow for further investigation in to the role of the KDM6B gene in human neurodevelopmental disorders.

 

Layman’s guide to the KDM6B gene

https://www.simonssearchlight.org/research/what-we-study/kdm6b/

 

12% of people with CFD studied in the paper below had mutations in KDM6B. So clearly all people with a mutation in this gene should be tested for CFD vis a spinal tap.

 

KDM6B Variants May Contribute to the Pathophysiology of Human Cerebral Folate Deficiency

Cerebral folate deficiency syndrome (CFD) was defined as any neurological condition that was associated with low concentrations of 5-methyltetrahydrofolate in the cerebrospinal fluid. Previous clinical studies have suggested that mutations in the folate receptor alpha FOLR1 gene contribute to CFD. In this study, we identified six genetic variants in histone lysine demethylase 6B (KDM6B) in 48 CFD cases. We demonstrated that these KDM6B variants decreased FOLR1 protein expression by manipulating epigenetic markers regulating chromatin organization and gene expression. In addition, FOLR1 autoantibodies were identified in CFD patients’ serum. To the best of our knowledge, this is the first study to report that KDM6B may be a novel CFD candidate gene in humans.


The way to confirm CFD, with certainty, is via a spinal tap.  This can then open the door to intravenous therapy with calcium folinate.

There is a blood test which then would lead to oral calcium folinate therapy.  This is now very common in children with autism in the US. It improves speech.

www.fratnow.com

The problem is that some people need the more potent intravenous therapy and without a spinal tap there is not enough proof to get the therapy.

 

CACNA2D1

The CACNA2D1 gene encodes voltage-dependent calcium channel subunit alpha-2/delta-1. 

Different types of mutation will have different effects and varying degrees of severity.

Some mutations in this gene are associated with a condition called “Developmental and Epileptic Encephalopathy 110”.

Developmental and epileptic encephalopathy-110 (DEE110) is an autosomal recessive disorder characterized by profound global developmental delay and hypotonia apparent in infancy followed by onset of seizures in the first months or years of life. Affected individuals achieve almost no developmental milestones and show impaired intellectual development, poor or absent speech, inability to walk or grasp objects, peripheral spasticity, and poor eye contact. Brain imaging shows hypoplastic corpus callosum and cortical atrophy.

CACNA2D1 is also a novel Brugada Syndrome susceptibility gene.

Brugada syndrome may be a major cause of sudden cardiac death in men under 40. People with Brugada syndrome on average die between the ages of 26 to 56 years, with an average age of 40 years. If treated appropriately, patients can have a normal lifespan.

A pediatric cardiologist should be consulted.

Fortunately the Alpha-2/delta proteins are believed to be the molecular target of the gabapentinoids gabapentin and pregabalin, which are used to treat epilepsy and neuropathic pain.

This means that an obvious path to investigate is whether the drug gabapentin has a positive effect. Mutations could produce either gain of function of loss of function.

Gabapentin binds to a the α2δ subunit. This binding does not directly block or open the channel, but it influences its overall activity.

The exact mechanism of action is still not fully understood, but it is believed that gabapentin:

·       Reduces the release of certain neurotransmitters involved in pain signaling, such as glutamate and substance P.

·       Alters the trafficking and function of the calcium channels themselves.

·       Therefore, gabapentin's action is more complex than simply "blocking" or "opening" channels. 

Gabapentin is not guaranteed to help in this case, but certainly might do.


Conclusion

The take home is really that if you invest thousands of dollars/euros/pounds in genetic testing, it is well worth your time spending some time on the internet looking up any flagged genes.

People expect too much from the geneticist writing the report.

Double check these things yourself.  Take your findings to an open-minded neurologist, who reads the research literature.

Be aware that the same mutation can be present in one or even both parents, with no noticeable negative effect, but be disease causing in their child. Genetics is often about the probability of something happening, rather the certainty. 

Look at partially-effective or sometimes-effective interventions in the research. For example, one reader is looking at mutations in NF1 plus a gene affecting epigenetics. He might want to try Lovastatin.  NF1 causes an increase in RAS, which is a pro-growth signal, this leads to RASopathies which can cause intellectual disability (ID). Lovastatin reduces RAS and it was trialled to reduce ID in NF1 - the results were mixed. It probably matters at what age you start trying to reduce RAS.