UA-45667900-1

Wednesday, 10 December 2014

Biotin/Biotinidase Deficiency in Autism and perhaps Autistic Partial Biotin Deficiency (APBD)?








Crete, as seen from the International Space Station
By ISS Expedition 28 crew (NASA Earth Observatory) [Public domain], via Wikimedia Commons

In this blog there is a tab at the top called “Disorders leading to Autism”.  This includes a long list of, supposedly rare, known conditions that lead to the development of autism.

In that list is Biotin deficiency and I even put the name of the gene that is thought to be dysfunctional.  The BTD gene encodes an enzyme called Biotinidase, that in turn allows the body to use and recycle biotin.

Biotin deficiency is a known cause of autism, but it seems that the assumption is made that the cause is Biotinidase deficiency.  The usual test done is for Biotinidase deficiency.

In good hospitals they routinely test for many of these dysfunctions when a child is originally diagnosed with autism.  When I say good hospitals, I mean big US hospitals attached to a university.  In other countries such testing rarely takes place, nor is it even mentioned.

We will see later that even these good hospitals may be getting the result wrong.  They are likely testing for the wrong defect, and so getting a "false negative" in some cases.

The take home message is that Biotin Deficiency may not be rare in autism, only Biotinidase Deficiency is rare.  Both are treatable.


How rare is Biotin Deficiency?

Biotin deficiency is supposed to be extremely rare.

One of this blog’s readers made reference to a recent Greek study.  They checked 187 children in Crete, diagnosed with autism, for various metabolic dysfunctions.

Evidence for treatable inborn errors of metabolism in a cohort of 187 Greek patients with autism spectrum disorder (ASD)



As the reader pointed out, the results are very odd.

The researchers identified 13 children whose results suggested something strange was going on with biotin.  When they did the further tests for biotin deficiency, which is usually caused by deficiency in  biotinidase, they could find nothing unusual.

Nonetheless, they implemented the standard therapy for biotin/biotinidase deficiency.  This involved large doses of oral biotin, which is very cheap and seemingly harmless.

The researchers found that 7 of the 13 made clear advances.  This indicates that they suffered from a biotin deficiency, but not a biotinidase deficiency. Biotinidase is used by the body to recycle its biotin.

Biochemical abnormalities suggestive of IEM

For 12/187 (7%) of patients, urinary 3-hydroxyisovaleric acid (3-OH-IVA) was elevated and sera methylcitrate and lactate levels were also elevated in two of these patients. Despite these biochemical abnormalities, defects in biotinidase, or holocarboxylase synthetase could not be demonstrated in either sera or fibroblasts. Of interest, none of these 12 patients was undergoing valproate intervention, the latter a potential source of 3-OH-IVA elevation in urine. Despite an absence of confirmatory enzyme deficiencies in these 12 patients, we nonetheless opted to treat empirically with biotin for 3 weeks, 2 × 10 mg and then for 6 months at 2 × 5 mg, which led to a clear therapeutic benefit in 7/13 consisting of improvement in the Childhood Autism Rating Scale (CARS; Table Table2).2). For those benefiting from biotin intervention, the most impressive outcome centered on a 42 month-old boy whose severe ASD was completely ameliorated following biotin intervention. This patient was subsequently followed for 5 years, and cessation of biotin intervention (or placebo replacement) resulted in the rapid return of ASD-like symptomatology. This patient currently attends public school without any clinical sequelae and remains on biotin at 20 mg/d.

In the following table are the results showing the effect on the CARS rating scale, before and after treatment with biotin.








Patient #1

Just look at what happened to the first patient in the above table.

For those benefiting from biotin intervention, the most impressive outcome centered on a 42 month-old boy whose severe ASD was completely ameliorated following biotin intervention. This patient was subsequently followed for 5 years, and cessation of biotin intervention (or placebo replacement) resulted in the rapid return of ASD-like symptomatology. This patient currently attends public school without any clinical sequelae and remains on biotin at 20 mg/d.

He went from severe autism to no autism.  (and back, when he stops the biotin)

Yet, if he was tested for the standard biotin(idase) disorder, even at the best center for autism in the world, nothing would show up


  
Biotin Deficiency

Genetic disorders such as Biotinidase deficiency, Multiple carboxylase deficiency, and Holocarboxylase synthetase deficiency can also lead to inborn or late-onset forms of biotin deficiency. In all cases – dietary, genetic, or otherwise – supplementation with biotin is the primary method of treatment.



Implications

Of 187 children, 13 were identified for biotin treatment and 7 responded .  None of these children would have been noticed by the normal diagnostic procedures of even the best laboratory, which look for biotinidase deficiency.

Also of interest is the effect of partial biotin deficiency.

·        profound biotinidase deficiency (<10% of mean normal serum activity)
·        partial biotinidase deficiency (10%–30% of mean normal serum activity).

Children with partial biotinidase deficiency and who are not treated with biotin do not usually exhibit symptoms unless they are stressed (i.e., prolonged infection)

Partial biotinidase deficiency isusually due to the D444H mutation in the biotinidase gene



Profound biotin deficiency would hopefully be noticed

Mild symptoms linked to biotin deficiency:-


  •        Loss of hair colour
  •         Loss of hair
  •         Fine and brittle hair




Background

The results of clinical studies have provided evidence that marginal biotin deficiency is more common than was previously thought. A previous study of 10 subjects showed that the urinary excretion of biotin and 3-hydroxyisovaleric acid (3HIA) are early and sensitive indicators of marginal biotin deficiency.


It does seem that biotin deficiency is usually caused by things that lead to biotinidase deficiency, so let’s look at the data on frequency (Epidemiology)


Biotin Deficiency – Epidemiology
Based on the results of worldwide screening of biotinidase deficiency in 1991, the incidence of the disorder is: 5 in 137,401 for profound biotinidase deficiency

·         One in 109,921 for partial biotinidase deficiency
·         One in 61,067 for the combined incidence of profound and partial biotinidase deficiency
·         Carrier frequency in the general population is approximately one in 120.

Both parents need to carry the genetic defect, for a child to inherit it.

So something odd is going on (in Greece).

In 61,067 people we would expect 600 people with autism.

It seems that in 600 Greek children with autism there may be 22 with a biotin dysfunction.  This is vastly higher than we would expect.

Not everyone with biotin dysfunction has autism and even if they did, in Greece there would be 22x greater incidence than elsewhere.


Implications

I think we (and the Greeks) have likely discovered some new phenomenon “autistic partial biotin deficiency”, APBD, which is not caused by the usual lack of biotinidase.  Somehow the dietary biotin is insufficient in these people, even though biotinidase is present.

APBD does not seem to cause all the severe symptoms of biotin deficiency, just the neurological ones and so remains undiagnosed.

Perhaps one of the other odd metabolic disorders in autism is affecting the biotin metabolism?  Remember that Harvard study suggesting the oxidative stress in the autistic brain reduces the activity of a key enzyme D2, that is needed to convert the thyroid pro-hormone T4 into the active hormone T3.  This would mean that despite a “normal” set of thyroid lab results from your doctor, you might well be hypothyroid inside the brain (low on T3).

Those with access to a good laboratory might consider sending a urine sample to measure 3-hydroxyisovaleric acid (3HIA).

Those without these options might have to settle with the option of trying 10-20 mg of Biotin for a short period and see if it has any effect.

Biotin appears to be one of those vitamins, like B12, where even huge doses may have no ill effect; they are just excreted.  The supplement companies are selling 10 mg pills of biotin;  the RDA for a 10 year old is 0.03 mg which is 333 times less.

Based on the Greek study, you would expect about 4% of autistic people to show a clear benefit, without first doing the 3HIA urine test.

A small chance of success per child, but a chance nonetheless.



Note on the study
  
I have referred to this Greek study once before. On that occasion I was talking about the ketogenic diet and modified Atkins diet.

It is widely accepted that the ketogenic diet can greatly reduce epileptic seizures, so it is not really surprising that it can also help some people with autism (but which ones?).

In the Greek study, via laboratory tests, they identified 9 % children who might benefit from this diet.  Just over a third of these identified children did indeed improve on the diet.

16/30 patients manifested increased sera beta hydroxybutyrate (b-OH-b) production and 18/30 had a paradoxical increase of sera lactate. Six patients with elevated b-OH-b in sera showed improved autistic features following implementation of a ketogenic diet (KD).

This remarkable study was published one year ago.

It has been cited just one time in subsequent literature (although twice now in this blog); this really tells us a lot. (nobody is interested)

Changing diet can require a great deal of effort and, if a fussy eater is involved, it can be even more difficult.  If biomarkers exist to narrow down who would benefit from a modified diet, this is really very significant.

You can easily try biotin pills for a couple of weeks, trying a ketogenic diet just on the "off chance", requires much more bother.   









Thursday, 4 December 2014

PolyPill Reformulated

One reader of this blog, who found that 2.5ml of the Australian broccoli sprout powder, I suggested in an earlier post, works wonders for her son (40 minutes after the first dose), asked if I was going to include it in my Polypill.

Then yesterday Monty’s assistant at school asked to take some powder to try on another small child with ASD.  Today she tells me that the same positive result was repeated, in half an hour.

So I decided it is time to update the PolyPill.

I did tell the researcher, I was in touch with at John’s Hopkins, that it appears you can reliably make Sulforaphane at home, without your own laboratory and a deep freezer.  I think they somehow prefer things to be complicated and hard to access.

It does amaze me how people are not adopting, even super-safe, ideas that might help their child.  Many tens of thousands of parents affected by ASD must have read the stories in their newspapers about Broccoli (Sulforaphane) and autism.  How come almost nobody has made it work at home? Or at least, that is what it seems like if you look on Google.  People write about having read about it.  They usually then say, “ah well, Johns Hopkins say it does not work at home and you need a standardized dose”.

Sometimes you need to think for yourself.

Behind all this is the belief that “doctor” always knows best.  Most people are terrified of “experimenting” on their child.  Those that actually do this, are nearly exclusively in the US, with their DAN doctors.  They seem to give up after a year or two and accept whatever is left of the autism.

By the time the child is older and the parents are less worried about them trying drugs, they have given up and accepted the “inevitable”.


Reader feedback

When I started this blog, I rather optimistically expected to join forces with many other motivated, scientifically knowledgeable, parents.

This blog is visited 10,000 times a month, but I can count on two hands the number of people that have acted on it and shared their experience on/off line.  There have been some really great outcomes, which is wonderful for those concerned. (great outcomes = big improvements)

Without wanting to be biblical, but having recently sat through the film, Pulp Fiction, with Monty’s older brother, this does sum things up nicely:-

"Ask and it will be given to you; seek and you will find; knock and the door will be opened to you”

It just might take you a lot more work than you expected.


PolyPill

Regular readers will have noticed that the Polypill is my formulation for treating classic early-onset autism.  It is a combination of the clever ideas of others, some developed a little further, and some ideas of my own, based on the literature.

Many drugs and supplements have some impact on autism.  Some make it better, some make it worse, but most have no effect whatsoever.

Drugs and supplements can have side effects and they can react with each other.  So it is wise to use only those with a major impact.


Broccoli Sprout Powder

The most surprising ingredient I have tested is freeze dried broccoli powder from Australia.  Who would have thought that 2.5ml of this green powder would have an effect on autism.  But it does, and without any of the extra myrosinase, that I had expected to need. Johns Hopkin’s version is a deep frozen product, made after reacting broccoli sprouts with daikon radish sprouts in the laboratory.

All of people working with Monty, aged 11 with ASD, have noticed the difference, so it really is not a placebo effect


Incremental changes

·        Much more unprompted speech (> 50% increase)

·    He started to talk to animals and continues to do
·     He opened the car window to say hello and good bye to someone he recognized passing by – totally unheard of behavior

·        Increased awareness and presence of his surroundings

·        Now, while the TV news is on, Monty is reading aloud the news ticker at the bottom of the screen.  Before, the TV news was just “wallpaper”, unless there were some explosions  or other excitement.

·        Improved mood and mild euphoria

·        The broccoli powder still produces euphoria
·        In other people it may just improve mood

The good news is that Broccoli really is more of a food than a drug and so should not be harmful; although all kinds of things can interact in strange ways.  For example, vitamin C with cinnamon is not a good idea.


Method of action

As usual, I do like to know how and why things work.

The broccoli sprouts contain many substances, at least two of which might be involved:-

1.     Indole-3-carbinol (I3C).  I3C has some extremely interesting properties for both cancer and autism.  I3C up-regulates a protein called PTEN, encoded by the PTEN gene.  PTEN is an “autism gene”.

2.     Sulforaphane (SFN) is the chemical that John’s Hopkins think is the “active” ingredient of broccoli.

SFN is an activator of Nrf2, a “redox switch”.  This release of Nrf2 has a known on/off effect on about 300 genes involved in the response to oxidative stress.

SFN is also an HDI, or an inhibitor of HDAC (Histone Deacetylase)

HDIs have a long history of use in psychiatry and neurology as mood stabilizers and anti-epileptics.

Interestingly, we learn from Wikipedia:- 

“To carry out gene expression, a cell must control the coiling and uncoiling of DNA around histones. This is accomplished with the assistance of histone acetyl transferases (HAT), which acetylate the lysine residues in core histones leading to a less compact and more transcriptionally active chromatin, and, on the converse, the actions of histone deacetylases (HDAC), which remove the acetyl groups from the lysine residues leading to the formation of a condensed and transcriptionally silenced chromatin. Reversible modification of the terminal tails of core histones constitutes the major epigenetic mechanism for remodeling higher-order chromatin structure and controlling gene expression. HDAC inhibitors (HDI) block this action and can result in hyperacetylation of histones, thereby affecting gene expression.

So it looks like those little broccoli sprouts might be initiating some very clever science, perhaps even some primitive gene therapy.













Conclusion

There are still plenty more ideas waiting to test, so there will no doubt be more updated versions of the PolyPill in future.

It does look like there may be more food ingredients and not just drugs, which is not what I expected.










Monday, 1 December 2014

Sodium benzoate (Cinnamon) trialed for Schizophrenia (Adult-onset Autism)


Regular readers will have noticed that behavioral diagnosese like autism, ADHD, schizophrenia or even intermittent explosive disorder (IED) do not impress me.  I think that patients deserve a biological diagnosis from a neurologist.

To me, Schizophrenia might as well be called adult-onset autism and ADHD be called autism-lite.

We have already seen an overlap in the genetics/channelopathies of these three conditions.

Schizophrenia affects adults that developed “normally” as children and so they do not have the physical brain damage that has been shown to occur in many cases of autism.  According to Courchesne, the physical abnormalities he finds in autistic brains have occurred before most children even get diagnosed (before 3-5 years of age).  The young brain does remain plastic and this appears to explain why some children make excellent progress.  The various dysfunctions in utero and thereafter have caused some structural abnormalities in the brain.  In schizophrenia, the dysfunctions occur well after the brain has matured; so the result is different.  There are nonetheless very many similarities both in the underlying genetics and also in the observed behaviors.

So I term Schizophrenia, adult-onset autism.  (Many years ago, autism was called child onset Schizophrenia).  Any therapies that show promise in adults with schizophrenia should be trialed in children and adults with autism.

Just as there are many different dysfunctions that can lead to autism, there will be many that lead to schizophrenia.  I believe that there will be a wide overlap between those two groups of dysfunctions.


Back to Sodium Benzoate, Cinnamon and Schizophrenia

In my last post I started to look at Parkinson’s and COPD (severe asthma) and I suggested that the same anti-oxidant gene DJ-1 might also be relevant to autism.

I proposed that sodium benzoate, taken in the form of cinnamon, might be a useful therapy.

Having received a comment that some people with autism do not find sodium benzoate agreeable (it is found in carbonated drinks and is a common food additive), I did some more checking.

Firstly, if you are histamine intolerant, you should avoid cocoa, sodium benzoate and cinnamon.

For anyone unaffected, I found that a trial has already been carried out using Sodium Benzoate in Schizophrenia, with very promising results.



DESIGN, SETTING, AND PARTICIPANTS A randomized, double-blind, placebo-controlled trial in 2 major medical centers in Taiwan composed of 52 patients with chronic schizophrenia who had been stabilized with antipsychotic medications for 3 months or longer.

INTERVENTIONS Six weeks of add-on treatment of 1 g/d of sodium benzoate or placebo.

MAIN OUTCOMES AND MEASURES The primary outcome measure was the Positive and Negative Syndrome Scale (PANSS) total score. Clinical efficacy and adverse effects were assessed biweekly. Cognitive functions were measured before and after the add-on treatment.

RESULTS Benzoate produced a 21% improvement in PANSS total score and large effect sizes (range, 1.16-1.69) in the PANSS total and subscales, Scales for the Assessment of Negative Symptoms–20 items, Global Assessment of Function, Quality of Life Scale and Clinical Global Impression and improvement in the neurocognition subtests as recommended by the National Institute of Mental Health’s Measurement and Treatment Research to Improve Cognition in Schizophrenia initiative, including the domains of processing speed and visual learning. Benzoate was well tolerated without significant adverse effects.

CONCLUSIONS AND RELEVANCE Benzoate adjunctive therapy significantly improved a variety of symptom domains and neurocognition in patients with chronic schizophrenia. The preliminary results show promise for D-amino acid oxidase inhibition as a novel approach for new drug development for schizophrenia.


As to be expected, the proposed method of action is nothing to do with DJ-1 and oxidative stress.  They believe it is all about enhancing NMDAR-mediated neurotransmission.

Quite frankly, I do not mind why they think it works, or who is right.

For me what matters is that in adult-onset autism 1 g/day of sodium benzoate produced a 21% improvement in PANSS total score and in other rating scales. 







If you are wondering what is a PANSS score, according to Wikipedia:-




To assess a patient using PANSS, an approximately 45-minute clinical interview is conducted. The patient is rated from 1 to 7 on 30 different symptoms based on the interview as well as reports of family members or primary care hospital workers.


Positive scale

7 Items, (minimum score = 7, maximum score = 49)

·         Delusions
·         Conceptual disorganization
·         Hallucinations
·         Hyperactivity
·         Grandiosity
·         Suspiciousness/persecution
·         Hostility


Negative scale

7 Items, (minimum score = 7, maximum score = 49)

·         Blunted affect
·         Emotional withdrawal
·         Poor rapport
·         Passive/apathetic social withdrawal
·         Difficulty in abstract thinking
·         Lack of spontaneity and flow of conversation
·         Stereotyped thinking


General Psychopathology scale

16 Items, (minimum score = 16, maximum score = 112)

·         Somatic concern
·         Anxiety
·         Guilt feelings
·         Tension
·         Mannerisms and posturing
·         Depression
·         Motor retardation
·         Uncooperativeness
·         Unusual thought content
·         Disorientation
·         Poor attention
·         Lack of judgment and insight
·         Disturbance of volition
·         Poor impulse control
·         Preoccupation
·         Active social avoidance

PANSS Total score minimum = 30, maximum = 210



Note regarding Histamine

Some people have a deficiency of diamine oxidase, this means that their body cannot break down histamine in their food, or produced by their food.  They are histamine intolerant.



There are also mast cell disorders:- Mast Cell Activation Syndrome (MCAS) and Mastocytosis that can affect some people with autism.

This area is not well understood and is subjective to diagnose and therefore treat.  Much will depend on which country you happen to live in.

Some people may have pollen allergies, but be histamine tolerant when it comes to food.  This just means that they produce enough diamine oxidase.

Some people have debilitating problems associated with mast cell disorders combined with histamine intolerance.


Histamine Intolerance

Many people with autism have allergies.  Some people have food intolerance.
In an allergic response, an allergen stimulates the release of antibodies, which attach themselves to mast cells. When histamine is released from the mast cells it may cause one or more of the following symptoms

· Eyes to itch, burn, or become watery
· Nose to itch, sneeze, and produce more mucus
· Skin to itch, develop rashes
· Sinuses to become congested and cause headaches
· Lungs to wheeze or have spasms
· Stomach to experience cramps and diarrhea

The release of histamine can be caused by almost any allergen. Examples include inhalant allergens (ragweed pollen, dust mite, etc.), drugs (penicillin, aspirin), stinging insect venoms, and foods (egg, wheat, milk, fish, etc.).


Histamine in Foods
There are many foods that contain histamine or cause the body to release histamine when eaten. These types of reactions are food intolerances, and are different from food allergy, in that the immune system is not involved in the reaction. The symptoms, however, can be the same as a food allergy.
An enzyme called diamine oxidase should break down any histamine that is absorbed from a histamine-containing food. So when you eat a food which contains histamine it should not affect you. However, some people have a low level of this enzyme. When they eat too many histamine-rich foods they may suffer ‘allergy-like’ symptoms such as headaches, rashes, itching, diarrhea, and vomiting or abdominal pain. This is called histamine intolerance.
Fermented foods may cause allergy symptoms because they are either rich in histamine or because yeast or mold is involved in the fermentation process.
Histamine-Rich Foods (including fermented foods):
· Alcoholic beverages, especially beer and wine.
· Anchovies, Mackerel
· Cheeses, especially aged or fermented cheese, such as parmesan
· Dried fruits such as apricots, dates, prunes, figs and raisins
· Fermented foods, such as pickled or smoked meats, sauerkraut
· Mushrooms, spinach, tomatoes, avocados
· Processed meats - sausage, hot dogs, salami, etc.
· Sardines, Smoked fish - herring, sardines, etc.
· Sour cream, sour milk, buttermilk, yogurt
· Soured breads, such as pumpernickel, coffee cakes and other foods made with large amounts of yeast.
· Vinegar or vinegar-containing foods, such as mayonnaise, salad dressing, ketchup, chili sauce, pickles, pickled beets, relishes, olives.

Histamine-Releasing Foods:
· Alcohol
· Bananas
· Chocolate
· Eggs
· Fish/Shellfish
· Milk
· Papayas
· Pineapple
· Strawberries
· Tomatoes