UA-45667900-1

Tuesday, 19 May 2015

ASD variants - (mis and missed) diagnoses. Calcium ion channel dysfunctions Cav1.1, 1.2, 1.3 and 1.4


This post serves to introduce some ideas relevant to a post that is will shortly arrive on calcium ion channel dysfunctions (Cav1.1, 1.2, 1.3 and 1.4).

As we have seen, nearly all behavioral and psychiatric disorders are just diagnosed based on observation.  Only in very rare cases is the underlying biological problem diagnosed.  So it is fair to say that these are not accurate medical diagnoses.

Under the wide umbrella term of ASD are likely hundreds of thousands of  discrete variants, since ASD generally results from the combination of multiple hits/dysfunctions.  A single one of these dysfunctions is usually not enough to trigger autism, but some may indeed trigger something else noticeable.  A small number of individual hits, like Fragile-X and Retts can trigger autism, but these are the exception.


Mis and Missed diagnoses

One reader of this blog received a diagnosis for his child as “late onset regressive autism or possible childhood disintegrative disorder”.  Neither of these options is very good, since you are talking about an entirely typical child who, after the age of four, begins to regress and lose his acquired skills.

After a long struggle, he found the biological diagnosis, which is mitochondrial disease.  After a few months of the Richard Kelley (from Johns Hopkins), therapy the regression was halted and now new skills are again being acquired.

This is another example of how unacceptable simple observational diagnoses are.  What would have happened if the reader had not stumbled upon this blog and then later sought out help from the leading experts (just look on my Dean’s list)?



Attention Deficit Disorder (ADHD)

ADHD is very commonly diagnosed in the US, much more so than in other countries.  More severe cases of ADHD look much like ASD, which is why I call them autism-lite.

Another group of ADHD may indeed be purely behavioral – too much time with smart phones, iPads and video games.  This is supported by the fact that the data on incidence of ADHD shows that a large group of children with ADHD, “grow out of it”, or were misdiagnosed in the first place.

However, it does look like there is another group of ADHD which is biological, but may be different to autism.  On this subject I will bring you the comments of Dr. Manuel Casanova, a neurologist and along with that, thoughtful and knowledgeable about autism. 

Then we have the recurring clinical trials on high EPA/DHA fish oil, which really do show an effect in most trials in ADHD, but fail in most trials in autism.  This will be developed further in the later post on calcium channels.  The suggested view is that either the vitamin A, or the omega 3 oil, is somehow helping and even perhaps some people have a problem absorbing some types of vitamin A.  I was always unconvinced by this. 

However, it has now been shown that the EPA in fish oil has an effect on certain L-type calcium channels.  If you had a mild dysfunction (channelopathy) of one of the L-type calcium channels, then a big enough dose of EPA might have an effect on them.  This becomes more interesting when you learn that some doctors in the US think that dyslexia is another autism-lite.

One suggested cause of dyslexia is visual deficit that makes reading difficult, but it also accompanied by a difficulty seeing in the dark.  This night blindness is known to be caused by vitamin A deficiency (or an inability to absorb it properly) and also by an ion channel dysfunction in Cav1.4.

It appears that the high EPA fish oil would increase vitamin A and also affect the function of Cav1.4.  The calcium ion channel Ca1.4 is widely expressed in your eyes.

Another interesting point is that it is thought that a dysfunction in one type of Calcium channel will often affect the function of others.  This is important because when you look at the effect of dysfunctions in these channels you will a listing including:-

·        Autism (Timothy Sydrome)
·        Mood disorder
·        Depression
·        Bipolar

As well as things like

·        Night blindness
·        Heart defects (Timothy Sydrome)

We also should note that many people (without autism) with sight problems claim improvement from taking high EPA fish oil.



Dyslexia

Dyslexia is the most common learning disability. It affects about 3 to 7 percent of people. While it is diagnosed more often in males, some believed it affects males and females equally. Up to 20 percent of the population may have some degree of symptoms

Dyslexia and attention deficit hyperactivity disorder (ADHD) commonly occur together; about 15 percent of people with dyslexia also have ADHD and 35 percent of those with ADHD have dyslexia.

The causes appear to be genetic and epigenetic. For example the gene KIAA0319


People usually think of dyslexia only in children, but that may be because many adults do not read very much.  Or do they "grow out of it".



ADHD

“It affects about 6–7% of children when diagnosed via the DSM-IV criteria and 1–2% when diagnosed via the ICD-10 criteria.  Rates are similar between countries and depend mostly on how it is diagnosed. ADHD is diagnosed approximately three times more in boys than in girls. About 30–50% of people diagnosed in childhood continue to have symptoms into adulthood.”

So it would seem that most people “grow out” of ADHD 



Dr. Manuel Casanova

Dr. Manuel Casanova is a neurologist and along with that is clever, thoughtful and knowledagable about autism.  He looks at measurable anatomical differences and how these may be related to behaviour.  So he is more into the consequences of unchangeable differences in brains.

If you start looking at ion channels and transporters as being key drivers in behaviour then you have the chance to make alterations.  We saw that the same applies to fine tuning the function and indeed structure of key neurotransmitter receptors.

In lay terms, Manuel is showing how brains are indeed “hardwired” differently in many cases of autism, ADHD and even dyslexia.  This might reinforce the old view that really it is “case closed” and nothing more can be done.

However the really clever scientists looking in greater depth show us that notwithstanding some structural variation, much of the problem lies in the aspects of the brain that can be modified and indeed some are constantly in a state of change, for example the shape of dendritric spines and indeed the very substructure of those  GABAA receptors.

He groups dyslexia with ADHD and sees them as fundamentally different to autsim.  Having said that, Manuel tells us that attention disorders may be found in close to 30% of autistic individuals


 He has his own blog.



I suggest you read his full article, but here are some excerpts:-


“Claiming that there is comorbidity across neurodevelopmental disorders based on a single behavioral symptom negates many aspects of the individuality of each condition. In this regard, there are marked differences in the cognitive styles of dyslexic or ADHD individuals and those within the autism spectrum. Dyslexics enjoy a top-down cognitive style, tend to be holistically-oriented and have a gestalt processing bias (e.g., they see the forest but lose track of the individual trees). They are considered to have strong central coherence and excel in synthesizing sensory or cognitive experiences. Individuals within the autism spectrum enjoy a bottom-up cognitive style which makes them detail-oriented. Thus, contrary to dyslexic/ADHD subjects, ASD individuals see the tree but tend to lose sight of the forrest. In addition, they have a local processing bias with weak central coherence and appear to be good analyzers.”






“The above related differences in cognitive style appear to have anatomical correlates. As compared to neurotypicals, dyslexics tend to have smaller brain volumes with a concomitant striking increase in the size of their corpus callosum (the white matter projections that join homologous areas in both cerebral hemispheres). In addition, they have a simplification of their convolutional pattern and their cortical modules for information processing (minicolumns) are wider than expected. We find completely the opposite in patients within the autism spectrum.”



Yet more labels

Since we will be looking at calcium channels and one thing that does affect them is EPA, we should look at another label, dyspraxia, which also is reportedy  affected by fatty acids.
  
Fatty Acids in Dyslexia, Dyspraxia, ADHD and the Autistic Spectrum





What is Dyspraxia, also known as Developmental Coordination Disorder (DCD) ?

Dyspraxia, also known as Developmental coordination disorder (DCD), is is a chronic neurological disorder beginning in childhood that can affect planning of movements and co-ordination as a result of brain messages not being accurately transmitted to the body.

People with developmental coordination disorder sometimes have difficulty moderating the amount of sensory information that their body is constantly sending them, so as a result dyspraxics are prone to sensory overload and panic attacks.
Many dyspraxics struggle to distinguish left from right, even as adults, and have extremely poor sense of direction generally.

Moderate to extreme difficulty doing physical tasks is experienced by some dyspraxics, and fatigue is common because so much extra energy is expended while trying to execute physical movements correctly. Some (but not all) dyspraxics suffer from hypotonia, low muscle tone, which like DCD can detrimentally affect balance.


Gross motor control

Whole body movement, motor coordination, and body image issues mean that major developmental targets including walking, running, climbing and jumping can be affected. The difficulties vary from person to person and can include the following:


  • Poor timing
  • Poor balance (sometimes even falling over in mid-step). Tripping over one's own feet is also common.
  • Difficulty combining movements into a controlled sequence.
  • Difficulty remembering the next movement in a sequence.
  • Problems with spatial awareness, or proprioception.
  • Some people with developmental coordination disorder have trouble picking up and holding onto simple objects such as pencils, owing to poor muscle tone and/or proprioception.
  • This disorder can cause an individual to be clumsy to the point of knocking things over and bumping into people accidentally.
  • Some people with developmental coordination disorder have difficulty in determining left from right.
  • Cross-laterality, ambidexterity, and a shift in the preferred hand are also common in people with developmental coordination disorder.
  • Problems with chewing foods.

Fine motor control


Fine-motor problems can cause difficulty with a wide variety of other tasks such as using a knife and fork, fastening buttons and shoelaces, cooking, brushing one's teeth, styling one's hair, shaving, applying cosmetics, opening jars and packets, locking and unlocking doors, and doing housework.

Difficulties with fine motor co-ordination lead to problems with handwriting, which may be due to either ideational or ideo-motor difficulties. Problems associated with this area may include:
  • Learning basic movement patterns.
  • Developing a desired writing speed.
  • Establishing the correct pencil grip
  • The acquisition of graphemes – e.g. the letters of the Latin alphabet, as well as numbers.

Associated disorders


People who have developmental coordination disorder may also have one or more of these co-morbid problems:




Dysjustabouteverything (DJE)

If you consider the early years of classic autism, you will see that, in many cases, it includes all of the above disorders, even hypertonia.

But some people are otherwise pretty much typical/normal, are diagnosed with a single disorder like dyscalculia.

The problem is that these are all just observational diagnoses.  Does something biological underlie and connect them?  I think it does.

An autistic person’s struggles with mathematics may be more to do with a problem of understanding the language used to explain it.  This is why, in many cases, they struggle to move beyond counting.  Special methods of teaching maths have been created for such people, but they only take you to an elementary level.

If you have Asperger’s, you have no problem with the language used to explain the concepts or to frame the questions.  Some people with Asperger’s excel at mathematics.

The same is true for dysgraphia, autistic people tend to have very scruffy handwriting, but does this mean that they have dysgraphia? 

Hypotonia is an interesting one.  Many parents report low muscle tone and indeed DAN doctors actually treat it (apparently with Creatine).  I think hypotonia, if present in autism, is likely to be connected to the disruption in the various growth factors that has occurred and this itself may related to GABAB dysfunctions. (I mentioned this connection in an earlier post).  In Monty, aged 11 with ASD, when he was a baby he had Hypertonia.  He was big and all muscle.  As he got older he slid down from the 80-90Th percentile to the 20th percentile.  This fits one very distinct pattern of classic autism.

In the case of Monty, almost all the earlier signs of Dysjustabouteverything have now vanished.  Is this always the case?  Why would that happen in some people and not others?  Did his Polypill interventions play a role?



To investigate

What we need to know is whether there is a common link between all these various “dys-disorders”.

Probably in some (mis/over-diagnosed) people there is no link; but in others there may well be.

In some people there really is a link.  I did not tell you that my old “favourite”, hypokalemic periodic paralysis (HPP), can be caused by a Cav1.1 dysfunction.  HPP-lite is something called hypokalemic sensory overload.  In a little experiment I demonstrated that autistic sensory overload can be just hypokalemic sensory overload.  You just need 250 mg of potassium and a disturbing noise or light to illustrate it.  This is also a symptom of what they call Dyspraxia.

So Cav1.1 associates with HPP (hypokalemic periodic paralysis) and by my inference, sensory overload and some hypotonia;  Cav1.2 associates directly with autism (Timothy Syndrome) and bipolar; Cav1.3 associates with mood disorders, depression, bipolar; Cav1.4 associates with night blindness and perhaps some dyslexia.
A dysfunction in one L-type channel (Cav1.1, Cav1.2, Cav1.3 and Cav1.4) can apparently cause dysfunction in the others.  This surprised me.

So if you have autism, is not surprising if you appear afraid of the dark, feel depressed, experience sensory overload and are not very muscular.

The good news is that much of this appears to be treatable.

For the scientists among you:-

CACNB2    

Voltage-dependent L-type calcium channel subunit beta-2 is a protein that in humans is encoded by the CACNB2 gene
http://www.ebi.ac.uk/interpro/entry/IPR005444


I did forget to remind readers that I see the label schizophrenia as just another name for adult onset autism.

So it is no surprise that adults with autism have a 22 times higher chance of also being diagnosed with schizophrenia compared to non-ASD people.  Note bipolar, OCD etc; and this does not include all those adults with autism who get forgotten.









Conclusion

I am not suggesting “medicalizing” people with dyslexia, or indeed most with ADHD. 
However, it might be useful for somebody affected to know if Cav1.1 to 1.4 were dysfunctional, then at critical moments, like exam time at school, you could indeed give them some extra help.

People with dyslexia, and I presume other “dys-disorders” do often get given extra time at school for exams.  People with ADHD are often entitled to financial benefits in developed countries, and it has been suggested that these countries are the ones with high incidence of diagnosis.  In the US 11% of children and 4.4% of adults have a diagnosis.   ADHD has been medicalized in the U.S. since the 1960s.  In the UK, 3.62% of boys and 0.85% of girls have an ADHD diagnosis.  In France less than 0.5% of children are taking medication for ADHD.

Here is a nice quote:-

Why Are ADHD Rates 20 Times Higher in the U.S. Than in  France?

“it makes perfect sense to me that French children don't need medications to control their behavior because they learn self-control early in their lives. The children grow up in families in which the rules are well-understood, and a clear family hierarchy is firmly in place.

In French families, as Druckerman describes them, parents are firmly in charge of their kids—instead of the American family style, in which the situation is all too often vice versa.”



In the case of ADHD, it looks like the French have got it right; but not sadly for autism.

Knowing many different nationalities, I can certainly confirm that French parenting is much tougher than the UK or US variety.  The UK variety is very similar to the US, but without the liberal use of drugs for ADHD or indeed autism.

In tough cases of ADHD, that even French parenting cannot control, perhaps it really is a calcium channelopathy.  Perhaps in these cases a mild calcium channel blocker like fish oil, or indeed Olive Leaf Extract may be potent enough, so you could use these daily without the need for any prescription medication.

In any case, Verapamil, if shown effective, looks a much safer bet than the usual ADHD stimulants like Ritalin.  If your ADHD was caused by calcium channel dysfunction, it would likely later appear elsewhere in your body; all those years on stimulants would not have helped you.

Recall that Verapamil can also be effective in bipolar.








Wednesday, 13 May 2015

Arbaclofen Given a Second Chance by the Simons Foundation


 Light at the end of the tunnel, for some


I did recently write about autism drugs that target the GABAB receptor.

Western doctors have Baclofen and a few did have experimental use of the more potent version called Arbaclofen, or R-Baclofen.  We saw that Russian doctors have a wider choice.

The rights to use Arbaclofen have been acquired by the Simons Foundation, and they intend to restart autism trials in humans.



  
Arbaclofen was found to be effective in some people with Fragile-X and autism, but it failed its clinical trial and the developer, Seaside Therapeutics, went out of business.

The Simons Foundation, for those who do not know, is probably the best thing to ever happen to people with autism.  The founder of the foundation is an American multi-billionaire, former fund manager and mathematician.  He has a daughter with autism and decided to do something about it.

Having already funded a great deal of research, including by some of the scientists on my Dean’s List, it looks like he is going one step further and taking ownership over the trial drugs themselves.  Being a mathematician he is not averse to funding the most complex areas of research which include genetics and ion channels.  Being a fund manager he understands risk.  Being rich also helps, but you also need to be philanthropic.

Given the poor performance to date of developing practical therapies from the vast wealth of existing autism research, this is a very encouraging development.

There is now a large industry being made out of autism research, but the only coordinated part of it seems to be the Simons Foundation.  Interestingly the Simons Foundation focuses its effort on the very best scientists and not the existing autism researchers.  Apparently they want Nobel Laureates and future Nobel Laureates.  That sounds good to me.

Some people are concerned that by focusing on specific areas like genetics, the Simons Foundation may miss other possibly fruitful avenues.  But it is usually the case that an intelligent person's well thought out strategy is better than no strategy, and, at the end of the day, Simons’ billions are his to spend as he pleases.

Hopefully Simons will do for autism, what Bill and Melinda Gates are doing for polio and malaria.






Tuesday, 12 May 2015

Minimizing Summertime Autism Flare-ups in 2015




When I first connected histamine to autism, I did not realize that this might be a common problem.  The most frequently viewed post on this blog is one on histamine and autism; so at least 10,000 people out there have googled “autism and histamine”.

Two years later, the therapy is still evolving and it should be said that, what works best for one person may not help in another person.  The main point is that in some people with autism, they face a summertime regression due to the effect of allergy.  So bad behaviours and aggression increase and good behaviours and indeed cognitive function decrease.  This appears to be the result of histamine and a pro-inflammatory cytokine called IL-6.

For the 2015 pollen season, which started early where we live, this is what we are using:-


Azelastine nasal spray, this is an H1 antihistamine that is also inhibits mast cells from “degranulating” and emptying their load of pro-inflammatory substances.  Once a day.

Quercetin is a cheap flavonoid that has numerous actions including on histamine H1 receptors, mast cells, and inflammation. 125mg two or three times a day.

Verapamil is an L-type calcium channel blocker and also a mast cell stabilizer. 40mg three times a day

Fluticasone propionate 50 µg (micrograms) – see below.  It is a steroid that has recently been shown to have some unexpected effects on mast cells.  


I have found that oral antihistamines were effective for only a couple of hours, but their effect varies widely from person to person.

In theory, Rupatadine should be the most effective anti-histamine, since it is also a potent mast cell stabilizer.  The old first generation antihistamines (that make you drowsy) could in theory be better than the new ones like Claritin, Zyrtec, since they can also cross the blood brain barrier (BBB).

Ketotifen and cromolyn sodium should also be useful, but if the allergy is pollen related, you really need the nasal spray (nasalcrom etc) to get the most effect.  In some countries they sell eye drops and not the nasal spray.  Usually the eye drops are more diluted than the nasal spray.  For example, the Azelastine eye drops contain 50% less Azelastine than the nasal spray, but are otherwise the same.  Where we live they have run out of the nasal spray but not the eye drops, so you could refill the spray with eye drops and double the number of sprays to get the same dose.

Drugs like Claritin and Zyrtec are H1 antihistamines and also partial mast cell stabilizers; they have a positive behavioral effect in some people with ASD, who are apparently allergy free.



New for 2015

I expect that two recent anti-inflammatory therapies, the Tangeretin flavonoid and the Miyairi 588 bacteria/probiotic may have a beneficial, indirect, effect on our usual summertime regression.

A more convention approach is to add fluticasone propionate to reduce the inflammation caused by allergy.  This drug is a steroid and widely used either as an inhaler to control asthma and COPD, or as a nasal spray to treat allergies.

As Flixotide inhaler, Monty, aged 11 with ASD and asthma, has already been taking fluticasone propionate for a few years.  We now use a tiny dose (50 µg), since his autism therapies have greatly reduced any asthma tendencies.

Fluticasone propionate nasal spray (Flixonase, Flonase etc) is widely sold as a treatment for hay fever and rhinitis and was recently combined with Azelastine (see above) as a treatment for moderate to severe allergies in a product call Dymista.

The combination of H1 antihistamine, mast cell stabilizer and anti-inflammatory all in one spray does seem a good idea.  The steroid dose using Dymista is actually lower than the usual dose of steroid when using Fluticasone propionate nasal spray alone.  You want to minimize the amount of steroid absorbed in the blood. When used as a spray/inhaler the amount is tiny, but still should be considered.

Dymista (Azelastine + Fluticasone propionate) does indeed work better than Azelastine alone.  There is no sign of allergy at all (no red eyes, sneezing, itchy nose), with Azelastine you still have an itchy nose.

In our case, the allergy symptoms, even minors ones, do correlate with the change in behaviour and cognitive function; so the target is no allergy symptoms at all.


If anyone has other therapies for summertime flare ups, feel free to share them.






Wednesday, 6 May 2015

Tangeretin vs Ibuprofen, as PPARγ agonists for Autism. What about PPARγ for Epilepsy?




Summary of the therapeutic actions of PPARγ in diabetic nephropathy


I did write an earlier post about NSAIDs (Nonsteroidal anti-inflammatory drugs) like Ibuprofen, which I expected to have no effect on autism.

  


However, to my surprise, I found that certain types of autism “flare-up” do respond very well to Ibuprofen.  Based on the comments I received, it seems that many other people have the same experience.

NSAIDs work by inhibiting something called COX-2, but they also inhibit COX-1.  The side effects of NSAIDs come from their unwanted effect on COX-1.

NSAIDs are both pain relievers and, in high doses, anti-inflammatory.  Long term use of NSAIDs is not recommended, due to their (COX-1 related) side effects.


Observational Study

All I can say is that in Monty, aged 11 with ASD, and with his last four milk teeth wobbly but refusing to come out, the increase in the cytokine IL-6 that the body uses to signal the roots of the milk teeth to dissolve seems to account for some of his flare-ups.  I do not think it is anything to do with pain.

This is fully treatable with occasional use of Ibuprofen and then “extreme behaviours” are entirely avoided.


Sytrinol (Tangeretin) vs Ibuprofen

Since Ibuprofen, when given long term, has known problems, I looked for something else.

On my list of things to investigate has been “selective PPAR gamma agonists”, which is quite a mouthful.  The full name is even longer.  The nuclear transcription factor peroxisome proliferator activated receptor gamma (PPARy) regulates genes in anti-inflammatory, anti-oxidant and mitochondrial pathways.  All three of these pathways are affected in autism.

We already know that non-selective PPARy agonists, like pioglitazone, developed to treat type 2 diabetes, can be used to treat autism.  The problem is that being “non-selective” they can have nasty side effects, leading to Pioglitazone being withdrawn in some markets.
  

  
While looking for a “better” PPARγ agonist, I came across the flavonoid Tangeretin, which is commercially available in a formulation called Sytrinol.

An effective PPARγ agonist would have many measurable effects.  The literature is full of natural substances that may, to some degree, be PPARγ agonists, but you might have to consume them by the bucket load to have any effect.

The attraction of Sytrinol is that it does have a measurable effect in realistic doses.  Sytrinol is sold as a product to lower cholesterol.  Tangeretin is a PPARγ agonist and you would expect a PPARγ agonist to improve insulin sensitivity and also reduce cholesterol. There are clinical trials showing this effect of Sytrinol.


Sytrinol (Tangeretin) Experiment

The most measurable effect of using Sytrinol for six weeks is that we no longer need any Ibuprofen.  It is measurable, since I am no longer needing to buy Ibuprofen any more.

About three days a week Monty’s assistant would need to give him Ibuprofen at school.  This all stopped, even though occasional complaints about wobbly teeth continue.

Nobody markets  Sytrinol (Tangeretin) as a painkiller.

Note:- Sytrinol capsules contain a blend of 270mg PMF (polymethoxylated flavones, consisting largely of tangeretin and nobiletin) + 30mg tocotrienols. Nobiletin is closely related to tangeretin, while tocotrienols are members of the vitamin E family.  All three should be good for you.


Tangeretin and Ibuprofen are both PPARγ agonists

The explanation for all this may indeed be that Tangeretin and Ibuprofen are both PPARγ agonists.  Inhibiting COX-2 may have been irrelevant.


  
It may be that by regulating the anti-inflammatory genes, via  PPARγ, the Sytrinol has countered the “flare-up” caused by the spike in IL-6.

Anyway, in the earlier post we did see that research shows that dissolving milk teeth is signalled via increased IL-6 and we do know that increased IL-6, caused by allergies, can trigger worsening autism. 

So it does make sense, at least to me.

Regular uses of Sytrinol/Tangeretin looks a much safer bet than any NSAID.

If anyone tries it, particularly those who regularly use NSAIDs, let us all know.



PPARγ and Epilepsy

If you Google PPARγ and autism you will soon end up back at this blog.

For any sceptics, better to Google PPARγ and Epilepsy.  Epilepsy looks to be the natural progression of un-treated classic autism.  If this progression can be prevented, that should be big news.

Prevention is always better than a cure.  All kinds of conditions appear to be preventable, or at least you can minimize their incidence.  

Here are just the ones I have stumbled upon while researching autism:- Asthma  (Ketotifen), type 2 diabetes (Verapamil), prostate cancer (Lycopene) and many types of cancer (Sulforaphane).

There are of course types of epilepsy unconnected to autism, but epilepsy, seizures and electrical activity are highly comorbid with classic autism




Abstract

Approximately 30% of people with epilepsy do not achieve adequate seizure control with current anti-seizure drugs (ASDs). This medically refractory population has severe seizure phenotypes and is at greatest risk of sudden unexpected death in epilepsy (SUDEP). Therefore, there is an urgent need for detailed studies identifying new therapeutic targets with potential disease-modifying outcomes. Studies indicate that the refractory epileptic brain is chronically inflamed with persistent mitochondrial dysfunction. Recent evidence supports the hypothesis that both factors can increase the excitability of epileptic networks and exacerbate seizure frequency and severity in a pathological cycle. Thus, effective disease-modifying interventions will most likely interrupt this loop. The nuclear transcription factor peroxisome proliferator activated receptor gamma (PPARy) regulates genes in anti-inflammatory, anti-oxidant and mitochondrial pathways. Preliminary experiments in chronically epileptic mice indicate impressive anti-seizure efficacy. We hypothesize that (i) activation of brain PPARy in epileptic animals will have disease modifying effects that provide long-term benefits, and (ii) determining PPARy mechanisms will reveal additional therapeutic targets. Using a mouse model of developmental epilepsy, we propose to (1) elucidate the cellular, synaptic and network mechanisms by which PPARy activation restores normal excitability;(2) demonstrate the significant contribution of mitochondrial health in pathologic synaptic activity in epileptic brain;(3) demonstrate inflammatory regulation of PPARy in epileptic brain;and (4) determine whether PPARy activation extends the lifespan of severely epileptic animals. The proposed studies, spanning in vivo and in vitro systems using a combination of techniques in molecular biology, electrophysiology, microscopy, bioenergetics and pharmacology, will provide insight into the interplay of seizures, mitochondria, inflammation and homeostatic mechanisms. The results will have tremendous, immediate translational potential because PPARy agonists are currently used for clinical treatment of Type II Diabetes. PPARy is under investigation as treatment for a wide variety of other neurological diseases with cell death and inflammation as common denominators;therefore, the results of this proposal will have a broad impact.

Public Health Relevance

Approximately 30% of people with epilepsy do not achieve adequate seizure control with current anti-seizure drugs (ASDs). This medically refractory population has severe seizure phenotypes and is at greatest risk of sudden unexpected death in epilepsy (SUDEP). Therefore, there is an urgent need for detailed studies identifying new therapeutic targets with potential disease- modifying outcomes.




Activation of cerebral peroxisome proliferator-activated receptors gamma exerts neuroprotection by inhibiting oxidative stress following pilocarpine-induced status epilepticus.

Abstract

Status epilepticus (SE) can cause severe neuronal loss and oxidative damage. As peroxisome proliferator-activated receptor gamma (PPARgamma) agonists possess antioxidative activity, we hypothesize that rosiglitazone, a PPARgamma agonist, might protect the central nervous system (CNS) from oxidative damage in epileptic rats. Using a lithium-pilocarpine-induced SE model, we found that rosiglitazone significantly reduced hippocampal neuronal loss 1 week after SE, potently suppressed the production of reactive oxygen species (ROS) and lipid peroxidation. We also found that treatment with rosiglitazone enhanced antioxidative activity of superoxide dismutase (SOD) and glutathione hormone (GSH), together with decreased expression of heme oxygenase-1 (HO-1) in the hippocampus. The above effects of rosiglitazone can be blocked by co-treatment with PPARgamma antagonist T0070907. The current data suggest that rosiglitazone exerts a neuroprotective effect on oxidative stress-mediated neuronal damage followed by SE. Our data also support the idea that PPARgamma agonist might be a potential neuroprotective agent for epilepsy.




CONCLUSION:

The present study demonstrates the anticonvulsant effect of acute pioglitazone on PTZ-induced seizures in mice. This effect was reversed by PPAR-γ antagonist, and both a specific- and a non-specific nitric oxide synthase inhibitors, and augmented by nitric oxide precursor, L-arginine. These results support that the anticonvulsant effect of pioglitazone is mediated through PPAR-γ receptor-mediated pathway and also, at least partly, through the nitric oxide pathway.



Note that elsewhere in this blog I have already highlighted that PPAR alpha agonists also seem to have an effect against epilepsy.  For example in this research:-


          

I was originally interested in PPAR-alpha, because of its role in regulating mast cells.  It seems that PPARγ also affects mast cells.


  


PPARγ modulators – drugs vs neutraceuticals vs functional food

It does seem that many people with inflammatory diseases, epilepsy, autism and even people who are obese, might greatly benefit from selective PPARγ agonists.

The choice would be between drugs, “nutraceuticals” and functional (good) food.

The drugs have not yet arrived that are safe and selective.  The current Thiazolidinedione (TZD) class of drugs TZDs tend to increase fat mass as well as improving insulin sensitivity and glucose tolerance in both lab animals and humans.




Since its identification in the early 1990s, peroxisome-proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor, has attracted tremendous scientific and clinical interest. The role of PPARγ in macronutrient metabolism has received particular attention, for three main reasons: first, it is the target of the thiazolidinediones (TZDs), a novel class of insulin sensitisers widely used to treat type 2 diabetes; second, it plays a central role in adipogenesis; and third, it appears to be primarily involved in regulating lipid metabolism with predominantly secondary effects on carbohydrate metabolism, a notion in keeping with the currently in vogue ‘lipocentric’ view of diabetes. This review summarises in vitro studies suggesting that PPARγ is a master regulator of adipogenesis, and then considers in vivo findings from use of PPARγ agonists, knockout studies in mice and analysis of human PPARγ mutations/polymorphisms.



As usual there are numerous “natural substances” that may also modulate PPAR-γ




A direct correlation between adequate nutrition and health is a universally accepted truth. The Western lifestyle, with a high intake of simple sugars, saturated fat, and physical inactivity, promotes pathologic conditions. The main adverse consequences range from cardiovascular disease, type 2 diabetes, and metabolic syndrome to several cancers. Dietary components influence tissue homeostasis in multiple ways and many different functional foods have been associated with various health benefits when consumed. Natural products are an important and promising source for drug discovery. Many anti-inflammatory natural products activate peroxisome proliferator-activated receptors (PPAR); therefore, compounds that activate or modulate PPAR-gamma (PPAR-γ) may help to fight all of these pathological conditions. Consequently, the discovery and optimization of novel PPAR-γ agonists and modulators that would display reduced side effects is of great interest. In this paper, we present some of the main naturally derived products studied that exert an influence on metabolism through the activation or modulation of PPAR-γ, and we also present PPAR-γ-related diseases that can be complementarily treated with nutraceutics from functional foods.



Conclusion

If you are one of those people successfully using NSAIDs, like Ibuprofen, to reduce autistic behaviors, you might well be in the group that would benefit from Sytrinol/Tangeretin.

If NSAIDs never help resolve your autism flare-ups, Sytrinol/Tangeretin may not help either.

Tangeretin does appear to have other effects, beyond not needing to use Ibuprofen.  It was found to be a potent antagonist at P2Y2 receptors.

Suramin is another potent P2Y2 antagonist and Suramin is showing a lot of promise in Robert Naviaux’s autism studies at the University of California at San Diego.  Suramin is not viewed as safe for regular use in humans.








Saturday, 2 May 2015

Sustained Release NAC for Autism and Schizophrenia








“Pharmacokinetics” of a typical drug


Today’s post is about what should be the optimal anti-oxidant therapy for autism, schizophrenia, COPD and any other disease in which oxidative stress is present.  You will have to be able to swallow pills, to fully benefit.

NAC seems to be the most potent, safe, anti-oxidant, the only drawbacks are:-

·        Short half-life

·        Can taste/smell bad


In autism, NAC is normally given three times a day, but often it is not practical to give a drug at precise intervals throughout the day.

This is a common problem with many drugs and has been solved long ago – with the sustained release pill.

If you find that four hours after giving NAC there is an increase in irritability, anxiety or stimming, it may be that oxidative stress has already returned.  It may be that other factors have triggered a higher load of oxidative stress.  The way to be sure is just to give a small extra dose of NAC and wait 15 minutes.  If everything returns to normal, you found the problem.

Since you cannot always be present with an extra half dose of NAC, the answer is the sustained release form of NAC.

Since we have seen that oxidative stress triggers all kinds of secondary dysfunctions, the sustained release form of NAC might also help minimize them, since you could have 24 hour protection.  Oxidative stress does not go away while you sleep.

For example, I recall the Polish researcher at Harvard who suggested that oxidative stress might cause central hypothyroidism in autism (low levels of T3 in the brain).

Your body produces the pro-hormone T4 in the thyroid which then circulates throughout the body.  Special enzymes, produced locally, then convert the T4 into the active hormone called T3.  The researcher found that in the autistic brain this enzyme was reduced by oxidative stress.

Many “alternative” doctors, mainly in the US, do prescribe extra T3 hormone to people with autism and indeed other conditions.  Some older ladies across the world are buying T3 hormone, online from Mexico, since their doctor will not prescribe it.  They say it makes them feel better.

As your endocrinologist will tell you, hormones are controlled by so-called feedback loops.  So if you start adding extra T3 hormone, your thyroid will start producing less T4.  Then you need even more supplemental T3.

I did do a little experiment with a small dose of T3, to see if a short term increase in T3 affects “my” kind of autism.  It most definitely does; as does a short term spike in potassium levels.  These are useful diagnostic tests, rather than therapies.

This would suggest that minimizing oxidative stress 24 hours a day, may not just be possible, but also highly beneficial.
 

OTC Sustained Release NAC  (NAC SR)

There actually is an inexpensive Sustained Release NAC , available OTC (without prescription).

  





The problem with currently-available granulated and effervescent tablet compositions is that they release N-acetyl cysteine very rapidly. Thus, the effervescent compositions as well as the granulate compositions currently available on the market achieve a maximum blood plasma level within 1 hr from administration. One matrix tablet formulation does show a maximum blood plasma level at 2-2.5 hrs after administration, although its recipe indicates that granulation was required. The problem with granulation of acetyl cysteine is that if any dissolves, the dissolved material starts to decompose into impurities.
In accordance with the present invention, this problem of overly-rapid release is obviated by providing the N-acetyl cysteine in the form of a tablet or other article made with the rheology modifying acrylic or methacrylic acid-based polymers, or analogues, described in commonly-assigned application Ser. No. 09/559,687, filed Apr. 27, 2000. Tablets made in this manner exhibit controlled release characteristics, thereby allowing the N-acetyl cysteine active ingredient to be released over a longer period of time.

The rheology modifying polymers used in the present invention provide controlled release of the N-acetyl cysteine and other biologically active compounds contained in the inventive tablet, if any, so that when placed in water or body fluid, the polymer swells to form a viscous gel which retards diffusion of the active material.

The advanced bilayer Sustain™ tablets combine 1/3 Quick Release and 2/3 Sustained Release formats to both immediately raise and to maintain blood levels over a longer period of time.* NAC Sustain®  releases in the small intestine over a 8 hour period, compared to the 1.5 hour biological half-life of NAC in the bloodstream.*



NAC in published research

Much currently available data is from very early studies on NAC that indicated that the half-life was about 5 hours, but subsequent studies suggested it is very much shorter, perhaps just 90 minutes.

The following study is quite old, but compares the behaviour of different NAC formulations in 10 volunteers.
































Some definitions:-



A biological half-life or elimination half-life is the time it takes for a substance (drug, radioactive nuclide, or other) to lose one-half of its pharmacologic, physiologic, or radiological activity. In a medical context, the half-life may also describe the time that it takes for the concentration in blood plasma of a substance to reach one-half of its steady-state value (the "plasma half-life").
The relationship between the biological and plasma half-lives of a substance can be complex, due to factors including accumulation in tissues, active metabolites, and receptor interactions

Mean Residence Time

For the medical field, residence time often refers to the amount of time that a drug spends in the body. This is dependent on an individual’s body size, the rate at which the Drug will move through and react within the person’s body, and the amount of the Drug administered. The Mean Residence Time (MRT) in Drug deviates from the previous equations as it is based on a statistical derivation. This still runs off a steady-state volume assumption but then uses the area under a distribution curve to find the average drug dose clearance time. The distribution is determined by numerical data derived from either urinary or plasma data collected. Each drug will have a different residence time based on its chemical composition and technique of administration. Some of these drug molecules will remain in the system for a very short time while others may remain for a lifetime. Since individual molecules are hard to trace, groups of molecules are tracked and the distribution of these is plotted to find a mean residence time.



Conclusion

This post may have been more useful for adult readers, with Asperger’s, who are self-treating.  Many people with Schizophrenia also self-treat with NAC, but they probably do not read autism blogs.

For those unable (yet) to swallow, pills you can have the option of breaking the effervescent tablets in half (or even quarters) to try and maintain a more stable level of NAC.  We sometimes do this, half a 600 mg tablet at school at 11 am,  when needed.  It only seems to be really needed in the pollen allergy season, which seems to trigger more oxidative stress as well as histamine and IL-6.  It works.

One reader of this blog is doing something similar with Bumetanide, he/she is giving it in three daily doses.  Bumetanide also has a short half-life, as does Verapamil.  There is no sustained release form of Bumetanide, but there is for Verapamil.

A final point raised is whether the benefit from NAC comes from it being a precursor to Glutathione (GSH), the body' own master antioxidant, or whether it is actually NAC's own free radical scavenging properties that really matter. It would appear to be the latter, based on the short half life of NAC and the short term beneficial effect.  This would imply that just normalizing GSH is not enough. Studies have shown that normalizing the reduced levels of GSH levels found in autism is readily achievable.