UA-45667900-1

Friday, 7 August 2015

Has anyone tried Cinnamon (or Sodium Benzoate) for Autism?




I have written several posts about Cinnamon and its metabolite Sodium Benzoate. I know that some readers are now using it for its cholesterol lowering and insulin sensitivity improving properties that were shown in the clinical trials I highlighted.













But has anyone tried it for autism?


The first time I wrote about it I did acquire a big bag of the correct variety (Cinnamomum verum or Ceylon Cinnamon) and also a bag of the very high flavanol (epicatechin) cocoa.  My cinnamon trial was limited to seeing what it looked/tasted like when added to the Polypill concoction Monty, aged 12 with ASD, drinks at breakfast.  It was rather like adding a teaspoonful of fine sand, so not much “testing” took place.

Now that Monty has shown an ability, and even enjoyment, for pill swallowing, things are much simpler.  The cinnamon can be put inside gelatin capsules; it’s a little messy, but no great trouble.

Having recently been researching about the gene enhancers and silencers, which are controlled by the 95% of your DNA that rarely gets studied (the exome is the part everyone studies and some people test for abnormalities), it did occur to me that I already have two safe substances, that I have both researched and acquired, which have a gene expression enhancing effect.


Cinnamon “Experiment”

Even though summer is the wrong time to test anything in Monty, aged 12 with ASD, since his pollen allergy triggers a regression, I decided to make a trial.  I have 1 kg of this special cinnamon, and so it’s not like I need to ration it.

I gave about 2.5ml of cinnamon split into three daily doses using some gelatin capsules that used to be full of another supplement (choline).


Results so far:-

Complete absence of summertime bad behaviors, which are already 90% subdued by Verapamil, but do sometimes present themselves.

Interesting behavioral developments:- 


·        Like many people with autism, Monty likes order.  So turn off lights, shut doors, wash dirty hands etc.  The latest surprise was that when I took something from the rear of my car and he shut the tail gate (boot). Given the size of my car, for someone of his small stature, this is quite an achievement, since he really has to stretch on his toes.  This is the first time he has ever done this and now he does it every time.

·        Monty can brush his teeth and get dressed, but his clothes are sitting there on his bed.  The other day when told to go upstairs and brush his teeth, he returned fully clothed, having chosen/found his clothes all by himself.

·        On awakening, sometimes Monty might say “can I have a glass of water”, to which he might be told go downstairs and get water, and usually someone would go down with him.  Recently I find him in the early morning sitting at the kitchen table playing on his iPad with the glass of water he served himself with.

·        Piano playing also seems to be going very well, indeed on Wednesday after his piano lesson the teacher started telling me that she has taught 73 children with autism and never has she had someone start at his beginning level and progress so far.  This is clearly not down to cinnamon (it was greatly helped by bumetanide, atorvastatin and NAC), but why is she telling me this now, after over three years of lessons?

·        Speech for people with Classic autism, even when it develops, is always a little odd, reading a book out loud or singing does not mean you can speak.  It is as if the mother tongue is a foreign language and needs to be translated in your head. So for me it would be like speaking German.  It is my fourth language, I know lots of words, but I cannot think in German.

Many people with autism like to know their schedule. Today Monty was going to go swimming, amongst other things, but a change of plan meant we had gone to eat.  So I said to Monty “I am too full to go swimming, we will go later”.

A few minutes later as I stopped the car, Monty says “swimming when Dad feels better”.

There is nothing super clever in that statement, but it is not the sort of unprompted comment I usually get to hear for son number two.


These are all little steps and may be coincidental, but normally with Monty things go backwards in summer.  Even effective interventions appear to lose their effectiveness. 

I still keep an open mind on cinnamon, but I did just order a big bag of empty gelatin capsules.


Anybody else tried Cinnamon?

It would be useful to know from people who found that Bumetanide or Sulforaphane were effective for autism, whether cinnamon also has a positive effect.

There are several reasons why it may help:-

·        Change in NMDA signaling, affecting the excitatory/inhibitory balance
·        Affects gene expression related to oxidative stress (why cinnamon helps reduce cholesterol and improve insulin sensitivity)
·        Increases BDNF, Brain-derived neurotrophic factor  (aka “brain fertilizer”)
·        NaB (sodium benzoate) reduces Microglial and Astroglial Inflammatory Responses
·        NaB exerts its anti-inflammatory effect through the inhibition of NF-κB
·        NaB suppresses the activation of p21ras in microglia
·        NaB can also regulate many immune signaling pathways responsible for inflammation, glial cell activation, switching of T-helper cells, modulation of regulatory T cells

NF-κB is the master regulator of inflammation in the same way that Nrf 2 is for oxidative stress.

Incorrect regulation of NF-κB has been linked to cancer, inflammatory, and autoimmune diseases, septic shock, viral infection, and improper immune development. NF-κB has also been implicated in processes of synaptic plasticity and memory


In autism it seems that we want to activate Nrf2 but to inhibit NF-κB.  Safely inhibiting NF-κB is the Holy Grail for many diseases.


We covered RAS in earlier posts.  The RAS protein is abnormally active in cancer.

So called RASopathies are developmental syndromes caused by mutations in genes that alter the Ras subfamily.  RASopathies are often associated with autistic symptoms and/or intellectual disability/mental retardation.

Common inhibitors of RAS are statins and Farnesyltransferase inhibitors.  Most Farnesyltransferase inhibitors are expensive cancer research drugs, but one is gingerol.

Since statins do very clearly improve the autism of Monty, aged 12 with ASD, I did try adding gingerol as my “Statin plus” therapy.  At the dose I used there was no noticeable effect.

However, I now learn that “NaB suppressed the activation of p21ras in microglia”.  P21, RAS, and p21ras are different names for the same protein.  So it would seem that NaB is therefore a RAS inhibitor and perhaps a more potent one than gingerol.
   
Too much BDNF, just like too much lawn fertilizer, may not be a good thing.

BDNF is low in schizophrenia, but is thought to be elevated in “most” autism.
   



 Abstract
Upon activation, microglia and astrocytes produce a number of proinflammatory molecules that participate in the pathophysiology of several neurodegenerative disorders. This study explores the anti-inflammatory property of cinnamon metabolite sodium benzoate (NaB) in microglia and astrocytes. NaB, but not sodium formate, was found to inhibit LPS-induced expression of inducible NO synthase (iNOS), proinflammatory cytokines (TNF-α and IL-1β) and surface markers (CD11b, CD11c, and CD68) in mouse microglia. Similarly, NaB also inhibited fibrillar amyloid β (Aβ)-, prion peptide-, double-stranded RNA (polyinosinic-polycytidylic acid)-, HIV-1 Tat-, 1-methyl-4-phenylpyridinium+-, IL-1β-, and IL-12 p402-induced microglial expression of iNOS. In addition to microglia, NaB also suppressed the expression of iNOS in mouse peritoneal macrophages and primary human astrocytes. Inhibition of NF-κB activation by NaB suggests that NaB exerts its anti-inflammatory effect through the inhibition of NF-κB. Although NaB reduced the level of cholesterol in vivo in mice, reversal of the inhibitory effect of NaB on iNOS expression, and NF-κB activation by hydroxymethylglutaryl-CoA, mevalonate, and farnesyl pyrophosphate, but not cholesterol and ubiquinone, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the anti-inflammatory effect of NaB. Furthermore, we demonstrate that an inhibitor of p21ras farnesyl protein transferase suppressed the expression of iNOS, that activation of p21ras alone was sufficient to induce the expression of iNOS, and that NaB suppressed the activation of p21ras in microglia. These results highlight a novel anti-inflammatory role of NaB via modulation of the mevalonate pathway and p21ras.

  



ABSTRACT Experimental allergic encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), the most common human demyelinating disease of the central nervous system. Sodium benzoate (NaB), a metabolite of cinnamon and a FDA-approved drug against urea cycle disorders in children, is a widely used food additive, which is long known for its microbicidal effect. However, recent studies reveal that apart from its microbicidal effects, NaB can also regulate many immune signaling pathways responsible for inflammation, glial cell activation, switching of T-helper cells, modulation of regulatory T cells, cell-to-cell contact, and migration. As a result, NaB alters the neuroimmunology of EAE and ameliorates the disease process of EAE. In this review, we have made an honest attempt to analyze these newly-discovered immunomodulatory activities of NaB and associated mechanisms that may help in considering this drug for various inflammatory human disorders including MS as primary or adjunct therapy.



Conclusion

Rather to my surprise, Cinnamon does seem to have a noticeable cognitive effect in the type of autism I am interested in.  It appears, rather like the statin, to promote improved adaptive behavior by reducing inhibition and increasing spontaneous thought and actual decision making.

Of all the many possible modes of action, I am thinking that inhibition of NF-κB and/ or RAS inhibition are most likely since the effect is very similar to that produced by the statin.

I will certainly continue with cinnamon and when my size 000 gelatin capsules arrive, I will look at different doses.  Currently the dose is about 2.5 ml split three times a day, using size 00 gelatin capsules.








Saturday, 1 August 2015

NMDAR hypo-function causing E/I imbalance in Autism and Schizophrenia – Baclofen, Sodium benzoate and Cinnamon (again)


Click on figure to enlarge

Interpretation, extrapolation and graphic - Peter  


Today’s post is not the one I intended.

It nearly got tucked into long complicated one, that most people might not read.

I should caution that I am perhaps over-simplifying something that is extremely complicated, but no one fully understands the subject.

There is much talk in autism about the imbalance between excitatory and inhibitory processes. In this blog this is normally all about the inhibitory neurotransmitter, GABA, not functioning properly.

There is of course another side to the story.  The excitatory neurotransmitter Glutamate signals via receptors including the NMDA receptors.  If signaling via these receptors is either up or downregulated, the delicate balance between excitatory and inhibitory can again be lost.

What caught my interest was an experiment on mice that caused downregulation of (excitatory) NMDA signaling. This caused the famous E/I imbalance and resulting autistic behavior.

The interesting part is that the researchers normalized the imbalance and the autism not by targeting NMDA but by targeting GABA.  They used baclofen that acts on GABAB receptors.  So they made the mouse autistic by adjusting NMDA (Glutamate) signaling, but recovered the mouse by adjusting the GABA signaling.  This is really quite compelling and made me look into the E/I imbalance again.

It also neatly explains why anti-epileptics, like valproate, when given during pregnancy can result in autistic off spring.  The Valproate increases GABA signaling, i.e. it inhibits neurons from firing too easily.  This reduced the tendency towards seizures.  It will unfortunately also enter the blood stream of the unborn child.  Here again it will shift the E/I balance towards inhibitory, but unlike in the mother, the E/I balance in the child was perfectly fine.  The valproate shifts the E/I balance out of the “safe zone” into the inhibitory danger zone.  This then can affects critical processes in the developing brain leading to autism.
   


NMDA hyper/hypo function

In earlier posts we have already seen that in autism NMDA activity be hyper (too much), hypo (too little) or normal.  There are drugs that can increase NMDA activity and others that reduce it.

In this post the research shows that reduced NMDAR signaling has been associated with schizophrenia, (some) autism and intellectual disability. 

A person with autism might be in this group, but as we saw in earlier posts on NMDA they might be in the opposite group and so have excessive NMDAR signaling.  A bit of trial and error would reveal whether the person was hyper, hypo or just right.  All three are possible in autism.   


GABA/Glutamate imbalance in Autism

The neurotransmitter GABA is supposed to be inhibitory and it is kept in balance by the excitatory neurotransmitter Glutamate. Glutamate binds to NMDA receptors and AMPA receptors.  GABA binds to GABAA and GABAB receptors.

In 2003 John Rubenstein and Michael Merzenich published a paper suggesting that autism might be the result of an E/I imbalance that disrupted both the development of the brain at critical periods and also was the underlying cause of some on-going autistic symptoms, including epilepsy (found in 30% of “old” autism) and what I refer to as pre-epilepsy (odd epileptiform activity without seizures – another 40% of “old” autism).  Plenty of subsequent research has supported their hypothesis.


Once well-established theory for the development of autism is that the balance of various neurotransmitters is out of balance.  GABA, the key inhibitory neurotransmitter in the brain, ceases to inhibit the firing of neurons as it should.  The result is chaos in the brain.

In this blog we have concentrated one cause of this so called E/I (excitatory/Inhibitory) imbalance.  That cause is the presence of the NKCC1 transporter in the brain beyond the first few weeks of life.  This transporter leads to an excess of chloride inside the cells and this shifts GABA away from inhibitory to excitatory.  This then results in a GABA/Glutamate imbalance.  This impairs cognitive function and logically may be a cause of some seizures.

As Rubenstein and Merzenich observed, the hypothesis of E/I imbalance gives hope that drugs correcting this balance may treat autism. This has already been proved to be the case.

But there are other possible causes of E/I imbalance.  Today’s post is about one of those.  People who respond to the prescription drug Baclofen and the experimental drug Arbaclofen most likely are affected by this kind of E/I imbalance.

This blog has extensively covered the GABAA-related cause of E/I imbalance, for which the prescription drug Bumetanide is effective.

Baclofen affects the GABAB receptor.  One reader of this blog did tell us that in her patients with Asperger’s and anxiety did respond well to Baclofen.  They quite possibly have an E/I imbalance of the type covered in this post.  If so the underlying cause may well be NMDAR-hypofunction.

Reduced NMDAR signaling has been associated with schizophrenia, autism and intellectual disability.  By definition people with Asperger’s do not have and intellectual disability, but the Reduced NMDAR signaling may still be holding back their ever higher potential cognitive function.

As we will see, there may be a simple way to treat the NMDAR-hypofunction.

We have already covered this in an earlier post, when I talked about sodium benzoate and schizophrenia.

Sodium benzoate has multiple effects.

Sodium benzoate is a D-amino acid oxidase inhibitor. It will raise the levels of D-amino acids by blocking their metabolism and in doing so enhance NMDA function.  In doing so the E/I balance is shifted towards excitatory.


Sodium benzoate also increases the expression of a protein called DJ-1.  This is well known gene/protein because of its role in Parkinson’s disease.  The DJ-1 protein plays a supporting role to a key anti-oxidative stress defense called Nrf-1.

At times of oxidative stress, the body activated Nrf-1 which in then turns on key genes that need to respond to the stress.  In the absence of enough DJ-1, Nrf-1 is unable to sound the alarm and turn on those genes.

Sodium Benzoate is a common food additive (people with histamine intolerance “should be” allergic to it) but it is also a byproduct of eating cinnamon.  This is why cinnamon was shown to have therapeutic value in Parkinson’s disease.  Rather surprising it has also been shown to be beneficial in early Alzheimer’s disease.

In the earlier post we also saw that cinnamon had other useful effects like lowing cholesterol and improving insulin sensitivity.

We saw in the earlier post that it is important to use the “purer” cinnamon that come from Sri Lanka, since the related species from China that is commonly used by bakers does actually have side effects in large doses.

The Sri Lankan cinnamon may cost a bit more, but a one year supply is only about $15.






            Abstract

Reduced N-methyl-D-aspartate-receptor (NMDAR) signaling has been associated with schizophrenia, autism and intellectual disability. NMDAR-hypofunction is thought to contribute to social, cognitive and gamma (30–80 Hz) oscillatory abnormalities, phenotypes common to these disorders. However, circuit-level mechanisms underlying such deficits remain unclear. This study investigated the relationship between gamma synchrony, excitatory–inhibitory (E/I) signaling, and behavioral phenotypes in NMDA-NR1neo−/− mice, which have constitutively reduced expression of the obligate NR1 subunit to model disrupted developmental NMDAR function. Constitutive NMDAR-hypofunction caused a loss of E/I balance, with an increase in intrinsic pyramidal cell excitability and a selective disruption of parvalbumin-expressing interneurons. Disrupted E/I coupling was associated with deficits in auditory-evoked gamma signal-to-noise ratio (SNR). Gamma-band abnormalities predicted deficits in spatial working memory and social preference, linking cellular changes in E/I signaling to target behaviors. The GABAB-receptor agonist baclofen improved E/I balance, gamma-SNR and broadly reversed behavioral deficits. These data demonstrate a clinically relevant, highly translatable neural-activity-based biomarker for preclinical screening and therapeutic development across a broad range of disorders that share common endophenotypes and disrupted NMDA-receptor signaling.





IMPORTANCE In addition to dopaminergic hyperactivity, hypofunction of the N-methyl-D-aspartate receptor (NMDAR) has an important role in the pathophysiology of schizophrenia. Enhancing NMDAR-mediated neurotransmission is considered a novel treatment approach. To date, several trials on adjuvant NMDA-enhancing agents have revealed beneficial, but limited, efficacy for positive and negative symptoms and cognition.
Another method to enhance NMDA function is to raise the levels of D-amino acids by blocking their metabolism. Sodium benzoate is a D-amino acid oxidase inhibitor.

OBJECTIVE To examine the clinical and cognitive efficacy and safety of add-on treatment of sodium benzoate for schizophrenia.

DESIGN, SETTING, AND PARTICIPANTS A randomized, double-blind, placebo-controlled trial in 2 major medical centers in Taiwan composed of 52 patients with chronic schizophrenia who had been stabilized with antipsychotic medications for 3 months or longer.

INTERVENTIONS Six weeks of add-on treatment of 1 g/d of sodium benzoate or placebo.

MAIN OUTCOMES AND MEASURES The primary outcome measure was the Positive and Negative Syndrome Scale (PANSS) total score. Clinical efficacy and adverse effects were assessed biweekly. Cognitive functions were measured before and after the add-on treatment.

RESULTS Benzoate produced a 21% improvement in PANSS total score and large effect sizes
(range, 1.16-1.69) in the PANSS total and subscales, Scales for the Assessment of Negative Symptoms–20 items, Global Assessment of Function, Quality of Life Scale and Clinical Global Impression and improvement in the neurocognition subtests as recommended by the National Institute of Mental Health’s Measurement and Treatment Research to Improve Cognition in Schizophrenia initiative, including the domains of processing speed and visual learning. Benzoate was well tolerated without significant adverse effects.

CONCLUSIONS AND RELEVANCE Benzoate adjunctive therapy significantly improved a variety of symptom domains and neurocognition in patients with chronic schizophrenia. The preliminary results show promise for D-amino acid oxidase inhibition as a novel approach for new drug development for schizophrenia.



Abstract 
This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA – CREB pathway, which may be of benefit for various neurodegenerative disorders.

There are several advantages of NaB and cinnamon over other proposed anti-neurodegenerative therapies. First, both NaB and cinnamon are fairly nontoxic. Cinnamon has been widely used as flavoring material and spice throughout the world for centuries. Cinnamon is metabolized to NaB. NaB is excreted through the urine, if in excess.

Second, cinnamon and NaB can be taken orally, the least painful route.

Third, cinnamon and NaB are very economical compared to other existing anti-neurodegenerative therapies.

Fourth, after oral administration, NaB rapidly diffuses through the BBB. Similarly, after oral administration of cinnamon, we also detected NaB in the brain

Fifth, glycine toxicity is a problem in different neurological diseases because for movement disorders, glycine is one of the factors for inhibiting motor neurons. When impaired, glycinergic inhibition leads to spastic and hypertonic disorders such as featured in PD, multiple sclerosis (MS) and spinal cord trauma. NaB is known to combine with glycine to produce hippurate, a compound that is readily excreted in the urine. Because PD and MS patients exhibit significant elevation in plasma level of glycine, NaB and cinnamon may have added benefits for MS and PD.




Benzoate, a D-amino acid oxidase inhibitor, for the treatment of early-phase Alzheimer disease: a randomized, double-blind, placebo-controlled trial.

Abstract 

BACKGROUND: 
N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission is vital for learning and memory. Hypofunction of NMDAR has been reported to play a role in the pathophysiology of Alzheimer disease (AD), particularly in the early phase. Enhancing NMDAR activation might be a novel treatment approach. One of the methods to enhance NMDAR activity is to raise the levels of NMDA coagonists by blocking their metabolism. This study examined the efficacy and safety of sodium benzoate, a D-amino acid oxidase inhibitor, for the treatment of amnestic mild cognitive impairment and mild AD.

METHODS:
We conducted a randomized, double-blind, placebo-controlled trial in four major medical centers in Taiwan. Sixty patients with amnestic mild cognitive impairment or mild AD were treated with 250-750 mg/day of sodium benzoate or placebo for 24 weeks. Alzheimer's Disease Assessment Scale-cognitive subscale (the primary outcome) and global function (assessed by Clinician Interview Based Impression of Change plus Caregiver Input) were measured every 8 weeks. Additional cognition composite was measured at baseline and endpoint.

RESULTS:
Sodium benzoate produced a better improvement than placebo in Alzheimer's Disease Assessment Scale-cognitive subscale (p = .0021, .0116, and .0031 at week 16, week 24, and endpoint, respectively), additional cognition composite (p = .007 at endpoint) and Clinician Interview Based Impression of Change plus Caregiver Input (p = .015, .016, and .012 at week 16, week 24, and endpoint, respectively). Sodium benzoate was well-tolerated without evident side-effects.

CONCLUSIONS:
Sodium benzoate substantially improved cognitive and overall functions in patients with early-phase AD. The preliminary results show promise for D-amino acid oxidase inhibition as a novel approach for early dementing processes.


The implications

There are numerous implications, since cinnamon is very cheap and Sri Lanka Cinnamon is seen as very safe.

·        Take cinnamon to lower the risk of Parkinson’s and Alzheimer’s
·        Take cinnamon if you have got Parkinson’s or Alzheimer’s
·        Take cinnamon if you are type 1 or 2 diabetic to improve insulin sensitivity
·        Take cinnamon if you have high cholesterol (perhaps you do not like Statins)
·        Rather unexpectedly, it is suggested that cinnamon should also help multiple sclerosis (MS) because it reduces glycine toxicity which otherwise leads to spastic and hypertonic disorders
·        Trial cinnamon if you have Asperger’s, Schizophrenia, Autism, MR/ID and even COPD
·        Trial cinnamon if (ar)baclofen positively affects your cognitive or emotional function.


Note that some people diagnosed with “autism” have the opposite NMDA dysfunction, they have too much signaling rather than too little.

One method to enhance NMDA function is to raise the levels of D-amino acids by blocking their metabolism. Sodium benzoate is a D-amino acid oxidase inhibitor. Cinnamon is metabolized in the body to sodium benzoate.

Giving cinnamon to someone with hyperfunction of NMDA, should make their symptoms worse.

Sodium Benzoate/Cinnamon also increases the level of BDNF



It is thought that BDNF  increases excitatory synaptic signaling partly



“BDNF increases spontaneous network activity by suppressing GABAergic inhibition, the site of action of BDNF is predominantly postsynaptic, BDNF-induced suppression of GABAergic synaptic transmission is caused by acute downregulation of GABAA receptors, and BDNF effects are mediated by its TrkB receptor and require PKC activation in the postsynaptic cell.”


BDNF is commonly elevated in autism.


So you would then expect that some people with autism/schizophrenia would benefit while others would not.


Since some people are allergic to sodium benzoate it would wise to start with a tiny amount of cinnamon.


Cinnamon has been used medicinally for centuries.

Cassia cinnamon from China, Vietnam or Indonesia contains coumarin.  Courmarin is not good for you.  Cassia cinnamon is what is normally used in food products, to save money.


In an earlier post:



we saw that Clioquinol and  D-Cycloserine should help those with those with reduced NMDAR function.

Those with elevated NMDAR function would benefit from Memantine and Ketamine.

So logically Clioquinol and  D-Cycloserine should help schizophrenia:-



Nobody seems to have tried Clioquinol on schizophrenia.



Baclofen for Schizophrenia

It is would also be logical that if some people with schizophrenia do have reduced NMDAR signaling then Baclofen should also help them, just as Sodium Benzoate has been shown to do and therefore cinnamon should.

Going back to 1977 Baclofen was indeed found to be effective in some types of schizophrenia





Conclusion


I think that Cinnamon is a better bet than Sodium Benzoate, because you actually may have other substances involved, not just NaB.

The dose at which cinnamon shows tangible biological effects in humans (lowing cholesterol etc.) is around 3g a day.  For those who can swallow capsules, that would be 3 large (size 000) gelatin capsules a day, otherwise you have to find a way of eating a teaspoonful of cinnamon a day.

According to the research “cinnamon has been widely used as flavoring material and spice throughout the world for centuries. Cinnamon is metabolized to NaB. NaB is excreted through the urine, if in excess.”  So it looks a safe therapy, whether it helps autism will depend on the specific biology of that individual.










Monday, 27 July 2015

Verapamil, Autism, Summertime Allergy, Asthma and Eczema


















As the symptoms get stronger, so does the therapy, 
going up in steps from May to July/August and then down to October


Today’s post is a practical one.  There is an interesting scientific one in preparation all about applying the emerging science of gene silencers and enhancers. 

I discovered in previous years that the summertime raging exhibited by Monty, now aged 12 with ASD, could be prevented using a small dose of the L-type calcium channel blocker, Verapamil.  Verapamil is also a mast cell stabilizer and blocks potassium channels linked to some inflammatory response.

This summer the story has repeated itself.  As the amount of airborne allergens increases from spring to summer the same seemingly mild allergy symptoms return.  So in late spring there was some sneezing and by mid-summer some eczema (atopic dermatitis) behind the knees and finally a very mild amount of asthma (slight wheezing); all of which were easily treated.

This apparently mild allergy triggers a flare-up in autism that is anything but mild.  To treat that the “silver bullet”, so to speak, is Verapamil.  It has a short half-life and so after 3-4 hours, depending on the initial dose, the effect is lost.  So in the peak of the allergy season, 20 mg every 4 hours provides near guaranteed protection.  Skipping a dose, like first one in the morning, will almost guarantee a mood change to agitation and then extreme anger.  That mood reverses within a few minutes of treatment again with Verapamil.

In late spring and early summer the use of allergy treatments (Azelastine, plus quercetin) and verapamil twice a day keeps things all under control.  But once the first faint signs of asthma reappear, due to the growing allergy effect, the only way to maintain normalcy is to make more frequent use of small doses of verapamil.  Using more antioxidants (NAC) does not have any effect; the verapamil addresses a summertime need.

In a previous post I did mention that I tried verapamil on a winter-time flare-up, just to see.  It had no effect whatsoever.  That problem was traced back to losing milk teeth and was solved with some ibuprofen, which was later replaced with Sytrinol/Tangeretin, the PPAR gamma agonist.  

Some children with autism are treated long term with Ibuprofen, or other NSAIDs, on a daily basis.  I have no doubt that it can be effective in specific cases, but the known side effects made me look for a safe alternative, which turned out to be Sytrinol.  Sytrinol has exactly the same effect as Ibuprofen, for this kind of flare-up, with no apparent side effect. Sytrinol is not a painkiller.

Since the roots of the final four milk teeth take several months to melt away and all the time levels of the inflammatory cytokine IL-6 are raised, there will be recurring behavioral flare-ups in those with the kind of over-activated immune system common in autism.  It seems plausible that the PPAR gamma agonist is down regulating  the activated microglia and thus blunting the immune over-reaction.  Anyway it works, for whatever reason.

The mast cells, degranulating due to allergens, release histamine and IL-6, the histamine causes further subsequent release of IL-6. Verapamil blocks this process.  The IL-6 released by the body to signal teeth to dissolve clearly is not reduced by Verapamil. 

The amount of inflammatory cytokines (IL-6 etc) produced by allergy is logically over a different order of magnitude to that used to signal milk teeth to dissolve.  The effect of Sytrinol is perhaps too mild to sufficiently dampen the response to the IL-6.   Maybe it helps somewhat, but I really cannot say one way or the other.

There seems to be a good case for Sytrinol year round and then Verapamil as required.  When I next update my Polypill formulation, Sytrinol will be included.

I think Verapamil likely has beneficial pleiotropic effects and so, in those who well tolerate it, it might be useful year round.  A small number of people do experience side effects.
     







Friday, 10 July 2015

Clinical Investigation vs Off-Label Treatment for Autism



Antonio Hardan, the psychiatrist at the Stanford School of Medicine, has published another paper.  Hardan is interesting, he is a clinician rather than a rocket scientist, but he gets involved in a very wide variety of clinical trials, usually of existing drugs that might be effective in autism.

In his latest paper, this time about Glutamatergic Dysfunction in Autism, he highlights the problems with clinical trials:-

·        Heterogeneity of autism

·        Subjective rating scales rather than biological measures.

In other words there is no single autism and there is no good way to reliably measure the efficacy of any drug tested on it.  Consider what that really means.








  
Hardan really should know about this, just look at the clinical trials he has been involved in:-







So why bother with Clinical Trials?

This may sound like a very unscientific question, but perhaps it is not.  A couple of years ago Roche pulled the plug on Arbaclofen, because it “failed” in its autism clinical trial.  Many parents thought it worked.  Now the Simons Foundation has acquired the rights to the drug and is restarting trials.  How many other trial drugs were prematurely brushed aside?

Many years ago the hormone secretin was put forward as a therapy for autism, particularly for people with GI problems.  Several expensive clinical trials later, it was determined to be ineffective.  But some people continued to rave about it.  Where they all deluded?

The very expensive IVIG therapy has also been put forward as a wonder therapy for autism.  The critics highlight that in studies 90% of people do not benefit and therefore the therapy has little value.  But what if you are in 10% that do respond very well?


Intravenous immunoglobulin treatment of children with autism.


Abstract

Since autism has been associated with immunologic abnormalities suggesting an autoimmune cause of autistic symptoms in a subset of patients, this study was undertaken to investigate whether intravenous immunoglobulin (i.v.Ig) would improve autistic symptoms. Ten autistic children with immunologic abnormalities, demonstrated on blood tests, were enrolled in this study. Their ages ranged from 4 to 17 years, with two girls and eight boys. Eight children (1 female and 7 male) historically had undergone autistic regression. Intravenous immunoglobulin, 200 to 400 mg/kg, was administered every 6 weeks for an intended treatment program of four infusions. In five children, there was no detectable change in behavior during the treatment program. In four children, there was a mild improvement noted in attention span and hyperactivity. In none of these children did the parents feel that the improvement was sufficient to warrant further continuation of the infusions beyond the termination of the program. Only in one child was there a very significant improvement, with almost total amelioration of autistic symptoms over the time period of the four infusions. Once the treatment program was completed, this child gradually deteriorated over a 5-month time period and fully reverted to his previous autistic state. In this treatment program, five children had no response to intravenous immunoglobulin. In the four children who showed mild improvements, those improvements may simply have been due to nonspecific effects of physician intervention and parental expectation (ie, placebo effect). However, in one child there was a very significant amelioration of autistic symptoms. There were no distinguishing historic or laboratory features in this child who improved. Given a positive response rate of only 10% in this study, along with the high economic costs of the immunologic evaluations and the intravenous immunoglobulin treatments, the use of intravenous immunoglobulin to treat autistic children should be undertaken only with great caution, and only under formal research protocols.


Just in this blog, which is amateur and not intended as a rigorous scientific review, we have seen numerous “rare” conditions that lead to “autism” that are actually treatable.

If you add up all these “rare” conditions you get a sizeable proportion of all the autism, diagnosed in those under four years old (i.e. more severe autism).


Clinical Investigations

If you accept that the initial autism diagnosis really tells very little, then you are left, like Hardan, testing all sorts of clever ideas on a trial group of kids who may have one to several, of thousands of discrete dysfunctions (CNVs etc.).

Then if you get a 10% response rate, you are doing great.

If you target something like oxidative stress, that is caused by hundreds of those thousands of discrete dysfunctions (CNVs etc.), then your odds of success shoot up.  This was the case in Hardan’s trial of N-acetyl cysteine.

Hardan is now going to trial oxytocin on kids with autism, but this idea has already been well and truly “trashed” by highly respected mainstream doctors.  They do this because they think autism is something easy to define and measure like high blood pressure.  If it is therapeutic in 10% of cases, that is great.


Quacks, Off-label and Clinical Investigations

I think it is great that Hardan can try all these drugs at Stanford and nobody even thinks of calling him a quack.  The same applies to a small number of inquisitive doctors at Johns Hopkins and Boston Children’s Hospital.

It would be interesting to know how Hardan treats his patients with ASD, who are not enrolled in a clinical trial.  Does he prescribe off-label? 

It is clear that most doctors in developed countries will run a mile/kilometer at the idea of treating somebody off label.  They fear being struck off/sued/ridiculed.

We had the UK pediatrician commenting on this blog that Baclofen was effective in 70+% of her/his patients with anxiety plus Asperger’s, but did not feel happy to continue prescribing it without some supporting evidence from elsewhere.  The fact that it was safe and effective was not enough.

Many of the tiny number of off-label doctors really do look like quacks to me, so I can understand the concern of mainstream doctors not to want to be associated with them.

What is the, scientifically well-briefed, parent supposed to do? (if self-treating is not an option)

I think there should be a way where you can enroll your child in a “clinical investigation”, where you accept that all the treatments are experimental and therefore have a higher level of risk than normal.  You waive your right to sue the doctor, or the hospital.  You can opt out of up to 10% of the therapies, based on valid concern.  For example, you might think IVIG is not safe.

You then enter a program in which all your child’s data can be used for research purposes.  So you agree to have to have EEGs, scans, genetic testing, spinal tap/lumbar puncture, blood tests, urine tests, hair tests etc.

The child is completely profiled and material is stored for possible further analysis later.

All known tests are then carried out, even obscure things like biotin deficiency, creatine deficiency and those amino acids we saw that triggered rare autism.

Then you go through all of the therapies known to be effective in some people.  So it includes memantine, IVIG,  donepezil, bumetanide, oxytocin, propranolol, baclofen, arbaclofen, even Zyrtec, NAC, D-Cycloserine, carnosine, carnitine, pancreatic enzymes, probiotic bacteria  etc.

The whole process would take a year.  If you treated 1,000 children you would then have a wealth of data.

You might have individually rare disorders totaling 15% of cases and then several clusters where the same drugs were effective in sizeable groups of children.  Then you would be able to look back in the data for the biomarkers of each cluster.

Then you would write a smartphone app for doctors to treat autism.  They would input the various biomarkers requested and out would come the suggested drug therapy recommendation(s).  So it would be a “guided off-label” approach where the doctor knows that the recommendations are “scientifically supported” but may not be perfect.


We just need the Simons Foundation to sponsor it! 


If you think it might be too expensive, just remember that at the recent international autism conference in Utah, there were 2,000 scientists and researchers in attendance. What exactly have they achieved, in practical terms, in the last 10 years and are likely to achieve in the next 10 years?

It does seem that some view success as diagnosing ever more people with "autism", so that they can receive "services", when they really should be diagnosing specific biological dysfunctions.

It is not an easy task, but you do not need 2,000 researchers.  You just need 20 pragmatic people to review the data and make a decision tree showing how to choose the 5 drugs most likely to help a particular person, based on their specific biomarkers.  

I guess that would leave 1,980 people with not much to do.