UA-45667900-1

Thursday, 9 August 2018

Ketones and Autism Part 3 - Niacin Receptor HCA2/GPR109A in Autism, Colonic Inflammation, Psoriasis and Multiple Sclerosis





 Repurposing a German psoriasis treatment for the second time?
First for Multiple Sclerosis and second for some Autism?

Today’s post is about one anti-inflammatory aspect of ketones; part 4 in this series will look at Ketones and their effect on the NLRP3 inflammasome, which also relates to inflammation; but it would be too much for one post. If you have elevated levels of the inflammatory cytokine IL-1β, common in much autism and Alzheimer’s, part 4 of this series will be very relevant.
Today we just look at HCA2, which should be interesting for people with Multiple Sclerosis (MS), psoriasis and anyone with autism who responds to HCA2 activation.
In Germany a tailor-made solution already exists for a potential clinical trial to evaluate the effect of HCA2 activation; and even with low dose tablets.
Activating HCA2 should have profound neuroprotective effects; the ways to activate it include: -

·        BHB (β-hydroxybutyrate) from the ketogenic diet

·        Butyric acid produced by bacteria and fiber in your intestines (or by eating rancid butter, or Tibetan Yak butter tea)

·        Butyrate supplements

·        Niacin (Vitamin B3 /nicotinic acid)

·        Dimethyl fumarate (an ultra-expensive US drug called Tecfidera, or an old German drug called Fumaderm) 

Activating HCA2 inside the gut can be used to reduce colonic inflammation; for this you would need your HCA2 activator to be in your colon, so the ketogenic diet would not help whereas fiber and the right probiotic bacteria would help.
For some autism and multiple sclerosis, you would think we just want to activate HCA2 receptors in the brain, but it may not be so simple.
There is no perfect solution to activate HCA2, mainly because it can cause flushing. 
The flushing effect is due to HCA2 activation of ERK 1/2 MAP kinase. Activation of MAP kinase in turn causes release of prostaglandin D2 (PGD2) from Langerhans cells in the skin and this causes flushing. 
The same PGD2 released in the brain is metabolized to another substance, 15-d-PGJ(2), which is a PPARϒ agonist.  PPAR gamma has been covered elsewhere in this blog, because agonists should be beneficial in some autism, however using a tangeretin/nobiletin supplement, that is a mild PPARϒ agonist, the positive effect lasts just a few days.
There are potent new drugs in development that may avoid flushing.


All the above options have other effects.
BHB from BHB supplements inevitably contain large amounts of Ca, K, Na or Mg, which will have their own effects.
Niacin causes flushing at higher doses.
Butyric acid has many potential beneficial effects, but too much may have some negative effects, at least in some people. It is an HDAC inhibitor, giving potential epigenetic effects.
Dimethyl fumarate (DMF) is likely the most potent current HCA2 agonist and can work wonders for severe psoriasis, some arthritis and some multiple sclerosis, but at these high doses does have some side effects.
Dimethyl fumarate (DMF) for psoriasis is not a cream, rather a coated tablet, the kind you are not supposed to cut in half. The adult dose can be 240mg three times a day, but as you can see in the photo at the start of this blog a 30mg tablet exists.  So, a practical low dose Dimethyl fumarate exists as a mild HCA2 agonist, but quite possibly it is more potent than niacin.
DMF as a drug is a bit pricey in Germany and exorbitantly expensive in the US. DMF as a chemical is very cheap. 

HCA2 and Neuroinflammation                       

Much is already known about how activating HCA2 can reduce neuroinflammation.
Putting out the fire, so to speak, is doubly important in much autism because inflammation makes chloride levels rise inside neurons (via increasing NKCC1 and reducing KCC2 expression). Elevated chloride levels make the neurotransmitter GABA work “in reverse” as excitatory; our current drug, bumetanide, to lower chloride levels lacks potency. If inflammation increases there comes a point when bumetanide no longer is able to maintain chloride at a low enough level; it then appears as “bumetanide has stopped working”. 

Nutritional or pharmacological activation of HCA (2) ameliorates neuroinflammation.


Neuroinflammation is a pathology common to many neurological diseases, including multiple sclerosis (MS) and stroke. However, therapeutic attempts to modulate neuroinflammation have proved difficult. Neuroinflammatory cells express HCA2, a receptor for the endogenous neuroprotective ketone body β-hydroxybutyrate (BHB) as well as for the drugs dimethyl fumarate (DMF) and nicotinic acid, which have established efficacy in the treatment of MS and experimental stroke, respectively. This review summarizes the evidence that HCA2 is involved in the therapeutic effects of DMF, nicotinic acid, and ketone bodies in reducing neuroinflammation. Furthermore, we discuss the mechanisms underlying the beneficial effects of HCA2 activation in neuroinflammatory diseases and the therapeutic potential of recently developed synthetic ligands of HCA2.

  



Figure 1. Potential anti-neuroinflammatory role of HCA2 as a target of monomethyl fumarate (MMF) and nicotinic acid (NA).  Based on the expression of HCA2 in neutrophils, monocytes, macrophages, and dendritic cells, several mechanisms underlying the immunomodulatory and anti-inflammatory effects of MMF and NA can be envisioned.  Both drugs may have systemic effects on monocytes, macrophages, or neutrophils outside the central nervous system (CNS) (1) that indirectly affect neuroinflammatory processes by altering the capacity of immune cells to enter the CNS or to promote neuroinflammation. There is also evidence that MMF and NA are able to directly inhibit neutrophil and possibly also monocyte infiltration through the blood–brain barrier (2) and they may also affect their inflammatory function within the CNS (3).  Finally, as antigen-presenting cells (APCs) that reactivate T cells in the perivascular space may also express HCA2, inhibition of APC function through HCA2 may contribute to the anti-neuroinflammatory effects of HCA2 agonists (4).





Figure 3. HCA2 mediates the neuroprotective effect of b-hydroxybutyrate (BHB).  On a normal diet, glucose (from the blood) serves as the main energy substrate of the brain (green arrows).  It is transported by GLUT1 over the blood–brain barrier (BBB) and metabolized. During fasting, adipocytes release large quantities of free fatty acids (FFAs) from stored triglycerides (TGs) (red arrows).  Alternatively, a high-fat, low-carbohydrate ketogenic diet leads to elevated FFA supply.  In the liver FFAs are metabolized to the ketone bodies acetoacetate (AcAc) and BHB.  In a negative feedback circuit, BHB binds to its receptor HCA2 on adipocytes and inhibits the release of TG. In the periphery, or after being transported into the central nervous system (CNS) by monocarboxylate transporter (MCT) 1 or 2, BHB also binds to HCA2 on neutrophils, microglia, and monocyte-derived cells and dampens neuroinflammation.  In addition, BHB is a substrate for mitochondrial energy production in neurons. 

BHB is not only a metabolic intermediate but also a signaling molecule that activates HCA2 and inhibits the G protein-coupled receptor GPR41 and histone deacetylase (HDAC) 1, 3, and 4 [94,95]. This led to the hypothesis that BHB induces neuroprotective effects through specific actions on receptors or enzymes. The IC50 values for inhibition of HDAC and GPR41 by BHB are higher than the EC50 for activation of HCA2 [94,95], suggesting HCA2 as the preferred target when BHB levels rise. 



The ketone body β-hydroxybutyrate (BHB) is an endogenous factor protecting against stroke and neurodegenerative diseases, but its mode of action is unclear. Here we show in a stroke model that the hydroxy-carboxylic acid receptor 2 (HCA2, GPR109A) is required for the neuroprotective effect of BHB and a ketogenic diet, as this effect is lost in Hca2(-/-) mice. We further demonstrate that nicotinic acid, a clinically used HCA2 agonist, reduces infarct size via a HCA2-mediated mechanism, and that noninflammatory Ly-6C(Lo) monocytes and/or macrophages infiltrating the ischemic brain also express HCA2. Using cell ablation and chimeric mice, we demonstrate that HCA2 on monocytes and/or macrophages is required for the protective effect of nicotinic acid. The activation of HCA2 induces a neuroprotective phenotype of monocytes and/or macrophages that depends on PGD2 production by COX1 and the haematopoietic PGD2 synthase. Our data suggest that HCA2 activation by dietary or pharmacological means instructs Ly-6C(Lo) monocytes and/or macrophages to deliver a neuroprotective signal to the brain.
  
DMF and MMF
DMF (Dimethyl fumarate) is in effect a prodrug, it is converted in the body by our friendly antioxidant glutathione (GSH) into MMF (monomethyl fumarate).
It is MMF that is the active substance.
DMF has long been used as a drug to treat severe psoriasis, an inflammatory condition of the skin. It was later found that in people psoriasis and MS, that when they took DMF for their skin problem their multiple sclerosis symptoms reduced.

DMF and Niacin for Multiple Sclerosis
Since we assume that DMF improves MS by activating HCA2, it would be logical to look at the effect of other activators of this niacin channel in MS.
You do not have to look far to find the so-called Klenner Protocol for MS, which treats it with large doses of niacin


We now have a hugely expensive FDA approved therapy for MS, based on the DMF used in Germany to treat psoriasis.
What about other HCA2 activators? Perhaps some in your kitchen?
Here is one long list: - 


One that caught my eye was Cinnamic Acid. Sure, it has less affinity for the receptor than some of the other substances, but it is an HCA2 activator.
When you eat cinnamon, the cinnamaldehyde present is converted into cinnamic acid by oxidation. In the liver, this cinnamic acid is β-oxidized to benzoate that exists as sodium benzoate.                                                                                           


Phenolic acids are found in abundance throughout the plant kingdom. Consumption of wine or other rich sources of phenolic acids, such as the “Mediterranean diet,” has been associated with a lower risk of cardiovascular disease. The underlying mechanism(s), however, has remained unclear. Here, we show that many phenolic acids, including those from the hydroxybenzoic and hydroxycinnamic acid classes, can bind and activate GPR109A (HM74a/PUMA-G), the receptor for the antidyslipidemic agent nicotinic acid. In keeping with this activity, treatment with a number of phenolic acids, including cinnamic acid, reduces lipolysis in cultured human adipocytes and in fat pats isolated from wild-type mice but not from mice deficient of GPR109A. Oral administration of cinnamic acid significantly reduces plasma levels of FFA in the wild type but not in mice deficient of GPR109A. Activation of GPR109A by phenolic acids may thus contribute to a cardiovascular benefit of these plant-derived products. 

Our data clearly show that many of the phenolic acids could act as ligands of the nicotinic acid receptor GPR109A, and activation of GPR109A by the phenolic compounds leads to a reduction of adipocyte lipolysis. Activation of GPR109A may lead to differential downstream effects on lipolysis and flushing response. For example, a number of GPR109A pyrazole agonists were found capable of inhibiting lipolysis but failed to elicit a flushing response and can antagonize nicotinic-acid-mediated flushing response (22). It is unclear if any of the phenolic acids from plant products, such as wine, could function as pyrazole agonist of GPR109A, thus leading to an escape of a flushing res

Phenolic acids are highly present in the Mediteranean Diet and so you might wonder if this diet is protective.  Apparently it is.

Mediterranean diet (MD) adherence and risk of multiple sclerosis: a case-control study.

CONCLUSIONS:


Our study suggests that a high quality diet assessed by MD may decrease the risk of MS.

So how about cinnamon as a home remedy for MS? Well is seems to help mice with MS. 

Although the central nervous system (CNS) is separated from the immune system by blood-brain barrier and traditionally considered “immune privileged”, our immune cells are capable of targeting the brain, leading to the development of CNS autoimmune disorders. Multiple sclerosis (MS) is one such autoimmune disorder of the CNS in which myelin components are particularly targeted by the immune system resulting in demyelination of axons and associated debilitating symptoms [13]. In spite of intense investigations, no effective therapy is available for this disease. Therefore, a safe and effective therapeutic option is necessary for MS.
Fortunately, we have been endowed with enormous natural remedies to take care our health issues. For example, cinnamon, the brown bark of cinnamon tree, that has already been being used for centuries throughout the world as spice or flavouring agent. Furthermore, medieval physicians used cinnamon for medical purposes to treat a variety of disorders including arthritis, coughing, hoarseness, sore throats, etc. Recent studies are indicating that this natural product may be helpful for MS [46]. Although the etiology of MS is poorly understood, it is becoming clear that widespread inflammation, loss of regulatory T cells (Tregs), hyperactivity of autoimmune Th1 and Th17 cells, breakdown of blood-brain barrier (BBB) and blood-spinal cord barrier (BSB), and loss of neuroprotective molecules in the CNS are critical for the manifestation of demyelinating pathology in MS [13]. Interestingly, cinnamon treatment is capable of modifying these pathological features in mice with experimental allergic encephalomyelitis (EAE), an animal model of MS [4,6].



Highlights

·        DMF may act in neurodegeneration and inflammation by activating the Nrf2 pathway. 
·        DMF and MMF downregulates the immune response through HCA2/GPR109A pathway. 
·        Nrf2 and HCA2/GPR109A pathways activation may explain DMF’s efficacy and safety profile.  

Conclusion: Although the DMF/MMF mechanism of action remains unclear, evidence suggests that the activation of HCA2/GPR109A pathway downregulates the immune response and may activate anti-inflammatory response in the intestinal mucosa, possibly leading to reduction in CNS tissue damage in MS patients.

The mechanisms of action of MMF and DMF are not well understood, but a growing body of evidence has demonstrated that DMF may act on both the neurodegenerative and inflammatory response of MS patients. The majority of the data related to the mechanism of action of DMF/MMF demonstrates the association of the compounds with the activation of the nuclear factor-(erythroid-derived 2) related factor 2 (Nrf2) pathway. Nrf2 activation leads to a type II antioxidant response, reducing both inflammatory responses and oxidative stress 11, which play a major role in demyelination and neurodegeneration in MS.   
In addition to the Nrf-2 signaling pathway, recent observations demonstrated that MMF/DMF could also downregulate the immune response through a on-Nrf2 related pathway. MMF has been shown to be an agonist of the hydroxycarboxylic acid receptor 2 (HCA2) signaling pathway, also known as niacin receptor 1 or nicotinic acid receptor GPR109A.12-14 Thus, it appears that DMF could also activate HCA2/GPR109A in addition to its effects on the Nrf2 pathway (unpublished data, Biogen). In this communication, we discuss DMF/MMF-induced HCA2/GPR109A pathway activation and its implications in the immune response and treatment of MS.  

Moreover, Parodi and colleagues described a novel HCA2/GPR109A signaling pathway modulating microglial activation in an in vitro study .13 MMF binding to HCA2/GPR109A led to subsequent activation of the G1-type G protein signaling cascade by a possible release of the  subunit of G-protein. The increase of Ca2+ induced the activation of AMP-activated protein kinase (AMPK) by calcium/modulin–dependent protein kinase 2 (CaMKK2). In addition, the authors provided evidence that AMPK activation led to an increase in NAD+ generation through phospho-AMPK (pAMPK) and finally activation of SIRT1 (sirtuin 1), which resulted in further inhibition of NF-kB signaling. NF-kB inhibition suppresses pro-inflammatory cytokines and reduces the migration of immune cells into the CNS in the EAE model. In addition, cultured microglial cells also showed reduced pro-inflammatory responses contributing to regulation of synaptic activity.13 All these previous data confirm that both DMF and/or MMF are effective in reducing the severity of EAE.  

A growing body of evidence suggests that nutrition and bacterial metabolites might impact the systemic immune response in autoimmune diseases, such as MS and its experimental models.33 Mucosal tolerance studies have shown that activation of tolerogenic intestinal immune cells can reduce the inflammatory response of autoimmune disease in the CNS.34 The oral administration of myelin basic protein (MBP) significantly reduced the severity of EAE34, at the same time activating and increasing the frequency of TGFβ-producing regulatory T-cells in the gut.35 HCA2/GPR109A is a receptor for butyrate and mediates some of beneficial effects of short-chain fatty acids produced by the gut microbiota.36 Ongoing microbiome studies have highlighted the importance of commensal bacteria both in induction and suppression of autoimmune diseases and this is being actively studied as a potential target for the treatment of immune-mediated maladies.37 A previous study demonstrated that administration of short-chain fatty acids to mice with EAE ameliorated symptomatic disease and reduced axonal damage through activation of regulatory T cells (T-reg) in intestinal mucosa.33 Other studies demonstrated that G protein-coupled receptors such as HCA2/GPR109A are potentially involved in increased extrathymic differentiation of T-reg cells. The activation of HCA2/GPR109A by butyrate metabolites from commensal microbiota increased the generation of colonic Tregs.38 Also, HCA2/GPR109A signaling promoted anti-inflammatory properties in colonic macrophages and dendritic cells and enabled them to induce differentiation of T-reg cells, which suppress colonic inflammation and carcinogenesis.39 The same study demonstrated that the activation of HCAR2 receptors is crucial to generate T-regs since colonic DCs and macrophages from Niacr1−/− mice are defective in inducing differentiation of these cell population.39     In addition to the generation of T-reg cells, the activation of HCA2/GPR109A in epithelial cells in the small intestine may induce the production of PGE2,15 which contributes to the anti-inflammatory response. PGE2 suppresses the production of proinflammatory cytokines and enhances the synthesis of anti-inflammatory cytokines.40 Therefore, PGE2 is not only a proinflammatory molecule but also a modulator of immune responses40. We hypothesize that DMF/MMF may amplify the anti-inflammatory response by binding to HCA2/GPR109A in gut cells (dendritic and epithelial), inducing the production of PGE2. Since DMF is metabolized in the gut, further studies are necessary to demonstrate whether the DMF/MMF stimulation of anti-inflammatory response in the gut may also contribute to the reduction of the tissue damage in the CNS of MS patients. 


Conclusions 
The complete mechanism of action of DMF in the treatment of MS remains to be elucidated. Recent observations highlight the importance of the activation of HCA2/GPR109A pathway by DMF/MMF in the downregulation of the immune response. Binding of DMF or MMF to HCA2/GPR109A on dendritic cells inhibits the production of pro-inflammatory cytokines in vitro and in EAE. There is a possibility that anti-inflammatory responses in intestinal mucosa are activated by DMF or MMF binding to HCA2/GPR109A, which is expressed on the surfaces of both immune cells and gut epithelial cells. Both forms can activate HCA2/GPR109A to differing extents, and therefore this possibility requires more study before an HCA2/GPR109A -mediated GI role for a specific form of fumarate can be determined. Given the extension of the gastrointestinal tract and the amount of cells expressing HCA2/GPR109A in intestinal mucosa, the immunomodulatory response in this compartment is relevant and may contribute to the reduction of tissue damage of CNS in patients with MS



MS (Multiple Sclerosis) Treatment

Most MS is the relapsing remitting kind.
Acute episodes are generally treated with steroids, which are inexpensive.

Some people’s autism is episodic; there is a base level and then there are periods when it becomes much more severe.
While there are no cures for MS there are disease modifying treatments that aim to reduces the frequency of the acute periods and reduce the damage that they cause. Since MS is essentially an auto-immune conditions, these treatments are all based on modifiying the immune system. They can have the side effect of overly reducing the immune response and then not fighting off a dangerous virus.

·        Interferons are used particularly to reduce the level of the proinflammatory cytokine IL-1beta.
·        Monoclonal antibodies are used to strengthen the blood brain barrier (and leaky gut barrier in Crohn’s) and so reduce the ability of inflammatory cytokines to enter the brain.
·        Classical immune-modulators include glatiramer acetate. Administration of glatiramer acetate shifts the population of T cells from proinflammatory Th1 T-cells to regulatory Th2 T-cells that suppress the inflammatory response. Dimethyl Fumarate was recently approved in the US and Europe as an MS drug in this category
In terms of potency and value, the UK’s review body was pretty upbeat about Dimethyl Fumarate.
All the disease modifying treatments for MS are hugely expensive, which must limit their use. 

ERβ
Interestingly, estrogen receptor beta (ERβ) is very relevant to MS, as we have seen it is to autism and also SATB2.  The most potent accessible agonist of ERβ is estrogen/estradiol, but unfortunately it also affects ERα. The ideal solution would be a brain specific selective agonist of ERβ. This does actually exist; it is called DHED, but it has not been commercialized. 
I think DHED would be helpful in MS, SATB2 and much idiopathic autism.
It is not surprising that MS mainly affects females and not surprisingly it gets worse post menopause. You would think someone would make the connection and treat this (with an ERβ agonist).


PDE4 inhibition

Another very logical therapy for MS is to use a PDE4 inhibitor to improve remyelination, this happens via activating PKA. PDE4 inhibition will also be broadly anti-inflammatory and this is why it is effective in asthma and COPD.

The good news is that the Japanese have been using a PDE4 inhibitor (Ibudilast)  for decades to treat asthma. So its safety profile is well known.

Not surprisingly under the new name MN-166, Ibudilast is showing promise.

               A Phase II Trial of Ibudilast in Progressive Multiple Sclerosis


In Western world Roflumilast (Daxas) is the widely used PDE4 inhibitor. It looks to me that the Japanese created a better drug - more selective and fewer side effects. In the long term MS trial of Ibudilast it was found that while GI side effects did occur at higher doses, they settled in 2-4 days; so no bid deal. Daxas does cause nausea, Ibudilast seems not to.

PDE4 inhibition is a very logical therapy choice for some autism and SATB2.

Relevance of MS to Autism
There are features of MS that are relevant to some autism, just like some MS features relate to Crohn’s. So, there is merit in understanding the current knowledge of MS treatment.
In terms of personalized medicine, we can see this broadens the potential toolkit to treat aberrant immune responses.
You can also see how someone with MS might benefit from reading autism science. They really should be making sure they produce enough butyric acid to   maintain tight epithelial barriers.  Butyrate not only causes a tightening of the intestinal epithelial barrier, but also the blood brain barrier. So if a leaky BBB is a feature of MS, then you want either to ferment butyric acid in your colon or a take sodium butyrate orally.

Budget MS Therapy
You can see that in a developing country, with no universal healthcare provision, a person could self-treat their own MS on a very modest budget. Tighten up the blood brain barrier, activate HCA2 and activate ERβ
In Chinese medicine there are treatments for postmenopausal osteoporosis, not surprisingly they are herbal ERβ agonists. The one recommended in a recent paper based on potency and safety was something called EXD (Er-Xian Decoction), more potent than Icariin as favoured by our reader Aspie1983.
Among the EXD, EBH, and ICA, EXD was found to have superior efficacy and safety profile.

Consuming soy will also activate ERβ, but you would need to eat it like a Japanese (lots of it).
Butter tea, as found in Tibet and nearby, would be rich in butyric acid and so should improve a leaky blood brain barrier.
I drank this very tea, made with Yak butter, decades ago and still recall the taste/smell.



I did stumble across one Australian psoriasis sufferer, who was self-treating with cheap non-medical DMF bought overseas. He seemed very happy with the result. If he develops MS he might just need to increase the dose.

Which HCA2 activator for some autism?
Well if you respond to BHB from ketone supplements it looks to me that HCA2 activation likely is involved, at least to some extent, particularly if your level of the cytokine IL-1β is normal. (If IL-1β is elevated, wait for part 4 of this series on ketones and autism.)
The simplest strategy would be to just up the BHB treatment.  The other options might include: -
·        Cinnamon

·        Niacin, which at high doses is used by some people with schizoprenia

·        Acipimox, a niacin derivative drug to lower cholesterol. 

·        DMF (Dimethyl fumarate) 
I have written about cinnamon before on this blog and I like the things it does, but if I was making a clinical trial I would go straight for the one that really should work, which is DMF. 
At high doses many people get side effects from DMF, but they usually fade over time.
Since BHB is not such a potent HCA2 activator, I doubt a large dose of DMF would be needed.

DMF as a drug        
Most readers of this blog are in North American, home of expensive drugs. Today you may be shocked at just how much is charged for DMF in the US.
In the form of Fumaderm, it available for free in some European countries.



Very recently a Spanish company has started to market DMF as a drug called Skilarence, so hopefully the price will eventually fall. 

DMF History and Cost
Dimethyl fumarate (DMF) is actually an inexpensive bulk chemical that is widely available.
Originally it was used in Germany to treat psoriasis.  Assuming a defect in the citrate cycle as the cause of his own psoriasis, Walter Schweckendiek, a German chemist, treated himself with large doses of succinic acid. When this first attempt was ineffective, he turned to the next metabolite in the cycle, fumaric acid, and experienced a ‘cure’ from his disease, as he reported in 1959.
To improve the gastrointestinal tolerance of fumaric acid he later used esters of fumaric acid. Although Schweckendiek published his own case report in a well-known German medical journal, his discovery first remained largely unrecognized by the academic medical community and spread mainly among alternative practitioners. This is how Hans-Peter Strobel, a Swiss village pharmacist, learned about the alleged efficacy of fumaric acid esters in 1982. 
One year later he founded the company Fumapharm AG, which further investigated fumaric acid esters leading to a Phase III study against psoriasis headed by Peter Altmeyer in 1994. This study earned fumaric acid esters the approval for treatment of psoriasis in Germany. Fumaderm, a preparation comprising mainly DMF, was on the German market for several years when neurologists in Germany recognized its efficacy against MS. In 2006 Biogen Idec bought Fumapharm and further developed DMF for the treatment of MS.
In the US Biogen sell Dimethyl Fumarate as Tecfidera, a single 240 mg tablet costs $120.
In Germany, the local company, also owned by Biogen of the US, still sells it as a treatment for psoriasis; a single tablet of Fumaderm 120mg for $4.
In China you can buy 100g for $6.
It looks like China is the place to be if you have MS. The Chinese just buys a bag of empty enteric capsules, measures out his DMF with his $10 micro scales.
Enteric capsules dissolve in the lower intestine where it is alkaline. Some drugs cannot survive in acidity earlier on in the digestive process.

His cost of 240g twice a day for a year

730 enteric capsules           $20

175g of DMF                     $10

Microscales                        $10

            Total                                 $40

His US counterpart (or his insurer) would pay $87,600 at the full price.
A German pharmacy would charge $5,840. The UK NHS will for sure have a discount on the German price and now they have switched to the Spanish version, Skilarence.
I think Walter Schweckendiek, the pioneering German chemist, who did all the original self-experimentation, would go for the “Chinese option” and treat himself for the annual cost of 3 Wiener Schnitzels.

HCA2/Gpr109a and colonic inflammation
We know that some people with autism have terrible GI inflammation; by activation HCA2 (also called Gpr109a) some people with colon inflammation may get some relief.
In the study below, they refer to the HCA2 activator butyric acid, but any HCA2 activator that end up in the colon should have the same effect.  To produce butyric acid, eat fiber and a butyric acid producing bacteria, as covered in earlier post. 


·         Commensal metabolite butyrate and niacin induce IL-18 in colon via Gpr109a
·         Butyrate and niacin induce IL-10 and Aldh1a in APCs in a Gpr109a-dependent manner
·         Niacr1 −/− mice exhibit increased risk for colitis and colon cancer 
·         Gpr109a signaling protects colon health during deficiency of gut bacteria and dietary fiber




It also is proposed that activating HCA2 in the gut has a positive effect in the brain for people with MS.  

Conclusion
HCA2 activation looks very interesting and I would love to know if this is a mechanism by which BHB/C8 supplements are improving autism for some readers of this blog.
It looks highly plausible. In one of the papers it was suggested that this is more likely than HDAC inhibition, because the effect of the ketone BHB on HCA2 is much larger than on HDAC 1, 3 or 4.
I am also interested that PPAR gamma is also activated via HCA2-PGD2 and then its metabolite 15d-PGJ, because the PPARγ agonists tangeretin/nobiletin in the supplement Sytrinol gives an improvement in autism for some people but for most, like my son, it only last 3 or 4 days.  The more potent PPARγ agonists used to treat Type 2 diabetes are reported in studies to improve some autism.
Cinnamon also seemed to have an effect in my trial, but there are several different substances in cinnamon that might be helping. I had not considered Cinnamic acid until this post.
People do use niacin for autism but based on the same level of science that made some people think that Multiple Sclerosis was caused by vitamin B3 deficiency (it is not).
The MS research raises the possibility that inflammation in the intestinal mucosa may be driving inflammation in the brain and that the effectiveness of HCA2 activation is in part driven by what is happening to the HCA2 receptors in your intestines rather than those in your brain.
I really do think some researcher should trial those little 30mg Fumaderm starter pills on people with autism. They use these lower dose pills before building up to the full psoriasis dose. The MS dose in the US is very much higher, 240mg twice a day.






Thursday, 2 August 2018

Turmeric/Curcumin – clinically effective in humans after all? SLC6A15 Amino Acid Transporter


Turmeric powder, only in food, modified the SLC6A15 gene

I know that most readers of this blog want to treat autism with supplements and/or diet.
Many supplements and herbal medicines do show promise in the laboratory, when tests are conducted in vitro, but very often when tests are made in humans the results are much weaker, or just not present.  Turmeric/Curcumin is a perfect example; in the test tube it has a wide range of potent benefits, but due to low absorption into humans (bioavailability) it does not show such conclusive results in human studies.
One researcher a while back did send me a study that reviewed all the turmeric/curcumin trials and it concluded that curcumin has no beneficial effect in humans.
In modern medicine anecdotal evidence does not count. Some anecdotes are genuine, but some are coincidence and some are placebo. 

Mini trial of Turmeric at three UK Universities
There is a remarkably good medical program produced by the BBC in the UK, called Trust me I’m a Doctor, where the doctor presenters team up with universities to test practical medical hypotheses.
In one study they took 100 people to assess whether turmeric has any measurable medical benefit. They teamed up with Newcastle University, Leeds University and a clever genetic researcher at University College London (UCL).

They showed that eating turmeric in your food modified a specific gene (SLC6A15) associated with certain cancers, asthma/eczema and depression.
Taking turmeric as a supplement pill or taking a placebo pill had no effect on the gene.
The researcher at UCL was measuring the epigenetic tags attached to the genes. He showed that methylation of this gene was increased by dietary turmeric. Changing the methylation of this gene will change when it turns on/off.
Anecdotally, we know that people who eat a lot of turmeric tend to have less cancer, less asthma and less eczema.
Given that this gene is also associated with depression, you might expect big eaters of turmeric to have either less, or more, depression. Probably nobody has researched this.  

SLC6 Gene Family
It is true that asthma and eczema (atopic dermatitis) are common in people with autism, but variations in the broader SLC6 family of genes are known to affect people with ADHD, Fragile X, Tourette’s and broad autism.
SLC transporters encompass approximately 350 transporters organized into 55 families. The SLC6 family is among the largest SLC families, containing 20 genes that encode a group of highly similar transporter proteins. These proteins perform transport of amino acids and amino acid derivatives into cells. 


In humans, the SLC6 family of transporters defines one of the most clinically relevant protein groups with links to orthostatic intolerance, attention deficit hyperactivity disorder (ADHD), addiction, osmotic imbalance, X-linked mental retardation , Hartnup disorder, hyperekplexia, Tourette syndrome, schizophrenia, Parkinson disease (PD), autism  and mood disorders such as depression, anxiety, obsessive compulsive disorder (OCD), and post-traumatic stress disorder (PTSD).
This review will focus on the structure-function aspects of the mammalian SLC6 transporters, their regulation by both classical as well as emerging epigenetic/transgenerational mechanisms and what impact these properties may have on disease and the use of biomarkers to detect these proteins in disease states  

The functional impact of SLC6 transporter genetic variation.


Solute carrier 6 (SLC6) is a gene family of ion-coupled plasma membrane cotransporters, including transporters of neurotransmitters, amino acids, and osmolytes that mediate the movement of their substrates into cells to facilitate or regulate synaptic transmission, neurotransmitter recycling, metabolic function, and fluid homeostasis. Polymorphisms in transporter genes may influence expression and activity of transporters and contribute to behavior, traits, and disease. Determining the relationship between the monoamine transporters and complex psychiatric disorders has been a particular challenge that is being met by evolving approaches. Elucidating the functional consequences of and interactions among polymorphic sites is advancing our understanding of this relationship. Examining the influence of environmental influences, especially early-life events, has helped bridge the gap between genotype and phenotype. Refining phenotypes, through assessment of endophenotypes, specific behavioral tasks, medication response, and brain network properties has also improved detection of the impact of genetic variation on complex behavior and disease. 

Amino acids are very important and it is not just that you need them, but you need them in the right place at the right time.
It appears that one of the many effects of defective amino acid/derivative transport into cells is on behaviour.
Improving amino acid transmission is therefore a potential therapy to correct aberrant behaviour, including depression but likely much more. 

Conclusion
Modern clinical trials are often hugely expensive, but as the BBC keeps showing with its TV series, you can carry out very meaningful research without breaking the bank.
You would think that cancer researchers would now look at the modified versions of turmeric that claim higher bioavailability and see if these pills can also modify this cancer gene, since they can easily repeat the UCL laboratory analysis. I doubt this will happen any time soon.
It has long been known that turmeric is not well absorbed, but just one teaspoon a day added to food was enough to modify the gene.
Indians have a low incidence of cancer and a high consumption of turmeric. Turmeric should particularly limit breast cancer.

Source: https://vizhub.healthdata.org/gbd-compare/

The above chart, where blue is best, shows India does well, as do some other turmeric eating countries (South Asia and the Middle East). Clearly longevity and quality of healthcare also matter, so beware Africa. Europe, Russia, Argentina, Uraguay, Oz, NZ and North American might want to up their turmeric intake.

We can say that turmeric is a potential epigenetic therapy for at least one important gene (SLC6A15) and possibly more, because turmeric does not just affect methylation. It has several other better documented epigenetic properties. 

Epigenetic regulation, which includes changes in DNA methylation, histone modifications, and alteration in microRNA (miRNA) expression without any change in the DNA sequence, constitutes an important mechanism by which dietary components can selectively activate or inactivate gene expression. Curcumin (diferuloylmethane), a component of the golden spice Curcuma longa, commonly known as turmeric, has recently been determined to induce epigenetic changes. This review summarizes current knowledge about the effect of curcumin on the regulation of histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and miRNAs. How these changes lead to modulation of gene expression is also discussed. We also discuss other nutraceuticals which exhibit similar properties. The development of curcumin for clinical use as a regulator of epigenetic changes, however, needs further investigation to determine novel and effective chemopreventive strategies, either alone or in combination with other anticancer agents, for improving cancer treatment.
Only a few reports have so far investigated the effect of curcumin on DNA methylation. Molecular docking of the interaction between curcumin and DNMT1 suggested that curcumin covalently blocks the catalytic thiolate of DNMT1 to exert its inhibitory effect on DNA methylation. However, a more recent study showed no curcumin-dependent demethylation, which suggested that curcumin has little or no pharmacologically relevant activity as a DNMT inhibitor. To clarify these contradictions, more research is urgently needed.
Given that 5-azacitidine and decitabine, two FDA-approved hypomethylating agents for treating myelodysplastic syndrome, have a demonstrated ability to sensitize cancer cells to chemotherapeutic agents, it would be worthwhile to explore whether the hypomethylation effect of curcumin can also induce cancer cell chemosensitization. Interestingly, a phase 1 trial with curcumin administered several days before docetaxel in patients with metastatic breast cancer resulted in 5 partial remissions and stable disease in 3 of 8 patients. This unexpected high response might have resulted from the clever sequential delivery of these two agents, which capitalized on and maximized curcumin’s epigenetic activity for cancer treatment.


Docetaxel is a 20 year old chemotherapy drug produced using extracts from the leaves of the European yew tree, perhaps best taken with root (rhizome) of the Asian Curcuma Longa plant. 
The main mode of therapeutic action of docetaxel is the suppression of microtubule dynamic assembly and disassembly. It exhibits cytotoxic activity on breast, colorectal, lung, ovarian, gastric, renal and prostate cancer cells.



Thursday, 26 July 2018

Promoting Spontaneous Speech in Autism – Behavioral Therapies and/or BHB?


One key issue for most people with more severe autism (DSM5 level 3, any DSM3, or just SDA – Strictly Defined Autism) is getting them to fully use their capacity to communicate.
Many such people do learn to talk, but often this is a very matter of fact kind of speech, that is limited to answering questions and making requests.
Often the limiting factor is not vocabulary, grammar or vocalization. Many can put ideas in words on paper, they can sing and read aloud; but something is lacking when it comes to conversation.
You can use behavioral therapy (like Verbal Behavior, VB) and some of the more relevant parts of speech therapy to encourage more extensive speech, but it is a real slog. When you spend less time on 1:1 “speech training”, in order to develop academic school work, you end up with less speech.
I was discussing this with Monty’s assistants, the need to take a step back and refocus on speech as a skill, in addition to regular school work.  It is good to be able to master algebra, but in any social situation communication remains number one.
I have long wondered if it is a behavioural problem, a structural brain problem or a treatable biological problem. I do see parallels with how typical people speak foreign languages. For example, if I was on a train in Germany and somebody wanted to talk to me in German, I would keep my answers short and simple; I would not be trying to keep the conversation going. My German is very rusty, but I can read it aloud and yes, I could sing in it. I would not make small talk in German.
I do consider people like Monty, now aged 15 with autism, not to have a first language; silence is their first language and their mother tongue is like a second language. Some readers of this blog are exceptions, but most people are pretty weak in their second language. For them it never becomes intuitive, you have to painfully learn what preposition takes what case and how to decline nouns and conjugate verbs. You can make a strong case that people who do not begin to speak until 4 years old have missed a critical window in how the brain develops and so when language does slowly begin to come, it can never become truly fluent, a bit like my German.
I do have a broader interest in how you acquire language. Monty's big brother is bilingual and also pretty fluent in Russian and German and chatty in French. This all came with minimal effort, but being exposed from birth to two languages and then learning more languages in the conventional way.  
Many readers of autism forums ask about what pill can you take to promote speech. I always thought this was rather wishful thinking, in that you cannot target such a specific aspect of someone’s autism. Just like there may be no magic pill for algebra.

Writing before talking?
One idea I had to promote more prolonged “conversation” was to first have Monty write about the subject.  I agreed with Monty’s assistants one new exercise, which is to have him write a daily diary of his day and then later on have him retell the day’s events, but without reference to the diary.
It does indeed work, having written about the subject, when later asked to talk about it, there is a much longer and more detailed conversation.
No pills required.

The Ketone BHB
The reason for all the recent posts in this blog about ketones and autism is that perhaps there actually is a “pill” you can take to promote speech.
Our reader Agnieszka in Poland has been experimenting with ketones for some time and since her son responds to most of the things in Monty’s PolyPill, I assume that there is a good chance that anything new that works for her son might also work for Monty.
One area that the ketone BHB seems to help in Agnieszka’s case is promoting speech and BHB does indeed have the very same effect in Monty.
One effect of sulforaphane/broccoli was increased verbalization. If your child is four years old, increased verbalization would be something to celebrate, but by 15 years old you want relevant speech (for some people sulforaphane does indeed produce increased relevant speech).  Very encouragingly, BHB seems to deliver an increase in intelligent, relevant, spontaneous speech. These are things that Monty could write but would not say, unprompted.
There are big gaps in the scientific data about ketone supplements in humans. These supplements are only widely available in North America, even though it looks like most commercial products are repackaged from Chinese bulk chemical producers.
It appears that the most effective therapy is a combination of a precursor to ketones (C8) and a salt of the BHB ketone (Sodium, Calcium, Magnesium or Potassium Beta-Hydroxybutyrate).
According to one Chinese bulk producer, the Calcium salt of BHB is not very effective, they recommend Sodium and/or Magnesium.
By using a salt of BHB, you are going to consume significant amounts of sodium, calcium, magnesium or potassium. This may be unwise for some people.
The objective is to raise the amount of BHB in your bloodstream.
You can measure BHB in urine inexpensively, but the more reliable blood testing equipment is more expensive.
The study below evaluated one widely available commercial supplement:- 


Figure 1b: mean, standard deviation of D-βHB (mmol/L) level in serum of all subjects () within a time period of 5.5 h after intake of βHB salt mixture (0.5 g/kg BW). 

The supplement used was Ketosports KetoCaNa Orange.
In fact the dose of Ca/Na Betahydroxybutyrate was very high, 0.5g per Kg. In the case of a typical adult that might be 40g per day.
That would contain:-

·      23g of BHB

·      2.6g of sodium

·      2.3g of calcium

That is quite a lot of sodium and calcium.
Some products are exclusively Potassium Betahydroxybutyrate, in those for each 23g of BHB you would get 8,700 mg of potassium, which is way too much to take at once. I am amazed it has not been banned.
When it comes to data on the use of C8 MCT oil in humans to produce BHB, we have the following study. The chart they produced is the total of BHB and another ketone, acetoacetate (AcAc), but we can extract the data on BHB itself. 


Results: C8 was the most ketogenic test oil with a day-long mean ± SEM of +295 ± 155 µmol/L above the CTL. C8 alone induced the highest plasma ketones expressed as the areas under the curve (AUCs) for 0–4 and 4–8 h (780 ± 426 µmol h/L and 1876 ± 772 µmol h/L, respectively); these values were 813% and 870% higher than CTL values (P < 0.01). CO plasma ketones peaked at +200 µmol/L, or 25% of the C8 ketone peak. The acetoacetate-to-β-HB ratio increased 56% more after CO than after C8 after both doses.

Conclusions: In healthy adults, C8 alone had the highest net ketogenic effect over 8 h, but induced only half the increase in the acetoacetate-to-β-HB ratio compared with CO. Optimizing the type of MCT may help in developing ketogenic supplements designed to counteract deteriorating brain glucose uptake associated with aging. This trial was registered at clinicaltrials.gov as NCT 02679222.




Plasma concentration and summed daily means (far right) during the metabolic study days for total ketones (β-HB and AcAc) obtained without an added test oil (CTL; ●) or after taking two 20-mL doses of CO alone (), C10 alone (□), medium-chain TGs (C8-C10; ), or C8 alone (). The open arrow indicates when the breakfast plus test oil was consumed; the solid arrow indicates when the test oil alone was consumed without an accompanying meal at midday. Data for metabolic study days on which CO+C8-C10 and CO+C8 were tested are not shown here for clarity, but their AUC data are shown in Figure 2. Values are means ± SEMs; n = 9/point. *Different from CTL, P < 0.05. AcAc, acetoacetate; CO, coconut oil; CTL, control; C8, tricaprylin; C10, tricaprin; β-HB, β-hydroxybutyrate. 

Our 2-dose test protocol (breakfast and midday) generated 2 peaks of plasma total ketones throughout 8 h, with the second dose inducing 3.5 and 2.4 times higher ketones with C8 than with CO, respectively. The first dose taken with a meal would be a more typical pattern but resulted in less ketosis that without a meal. One limitation of this study design is that the metabolic study period was only 8 h. A longer-term study lasting several weeks to months would be useful to assess the impact of regular MCT supplementation on ketone metabolism.

In summary, C8 was the most ketogenic MCT tested in this acute 8-h study and its ketogenic effect was significantly higher in the absence of an accompanying meal. Despite a low net ketogenic effect, CO may still be of interest because of its effect on plasma acetoacetate-to-β-HB ratio. With the help of positron emission tomographic imaging and the ketone tracer 11C-acetoacetate (2, 18, 20), it is now possible to investigate the impact on tissue ketone uptake of various ketogenic interventions.



Areas Under the Curve = AUC 

Plasma concentration and summed means of 0- to 4-h and 4- to 8-h AUCs for plasma total ketones (i.e., AcAc and β-HB combined) (A) and for the mean AcAc-to-β-HB ratio (B). Bars represent no test oil consumed (CTL) or values after taking 2 doses of CO alone, C10 alone, medium-chain TGs (C8-C10), C8 alone, CO+C8-C10 (50:50), or CO+C8 (50:50). Values are means ± SEMs; n = 9. The AUC for 0–4 h was significantly different from the AUC for 4–8 h under all conditions. Labeled means without a common letter differ (a < b < c < d < e and A < B < C < D < E), P < 0.05. AcAc, acetoacetate; CO, coconut oil; CTL, control; C8, tricaprylin; C10, tricaprin; β-HB, β-hydroxybutyrate.

If we assume AcAc/BHB from C8 oil is 0.8 and that taking C8 without foode gives a total peak ketone (AcAc + BHB) of 0.5 mmol/L in blood. That implies we can approximate peak BHB as 0.28 mmol/L and peak AcAc as 0.22 mmol/L.
The jumbo dose of 23g of BHB produced peak BHB of 0.6 mmol/L in adults.
If the BHB level in blood is linearly related to the dose of BHB supplement, the we might assume that 15ml of Ketoforce produces 0.15 mmol/L (3.9*1.5/23*0.6).
If the Chinese are right that calcium BHB is not effective, then 15ml of Ketoforce likely produces a bit more than 0.15mmol/L., since it contains sodium BHB and potassium BHB.
So we might assume that my 20ml of C8 and 15ml of Ketoforce would produce  a peak BHB in the bloodstream of about 0.5 mmol in a 55kg boy and that slightly more is coming from the C8 than the BHB salt.
As you can see from the chart 0.5 is not very much and just at the lower edge of nutritional ketosis. With supplementation 0.5 is the peak level; it will rapidly fall back to the starting level.


So via supplementation we have a brief period of mild nutritional ketosis.

Anyone who has done their homework on Ketones will have come across Dominic D’Agostino.  He is a researcher with a big interest in ketones. He has published interesting research and has his own blog on the subject.

I saw his advice that suggested starting with 10ml of C8 and 10ml of KetoForce.
The producer suggests 30ml a day of Ketoforce in adults.
10 ml of Ketoforce contains
·      3.9 g of BHB

·      533 mg of Potassium

·      533 mg of Sodium

Even 500mg of potassium is going increase potassium levels in your blood.
If you happen to be taking bumetanide for autism, you will be losing potassium and likely taking a potassium supplement. Depending on your bumetanide dosage and potassium supplement, you may well be able to make some adjustments and cope with 10 ml of Ketoforce. 

Speech and C8/Ketoforce Dosage
Our reader Agnieszka was very scientific and tried different BHB supplements and measured  BHB in urine. She found Ketoforce the most effective at producing BHB in urine; speech was one big area of improvement, but not the only one.
I took the advice of Dr D’Agostino, the ketone guru, and combined Ketoforce with C8 in my experiment.
Starting with 10ml of C8 and 10ml Ketoforce, it did produce a marginal change in Monty, but increasing to 20ml of C8 and 15ml of Ketoforce produced a clear increase in spontaneous speech.

Work in progress
Clearly this is a work in progress. Ideally I would want to get all the BHB from C8, since then I do not need to worry about sodium and potassium.
Ketoforce is pretty expensive in the US and very expensive in Europe. C8 is not cheap, but much more reasonable.
Other MCT oils and coconut oil may be cheaper, but are very much less potent, so C8 is the most cost effective MCT oil to produce the ketone BHB.
A naturopathic physician in the US, called Dr Bruce Fife, has written extensively about “reversing autism” with coconut oil; that kind of language will make many people wary. He does suggest the mode of action is calming microglia, which is something BHB should be doing. Regular coconut oil will produce BHB, but you would have to eat a great deal of it.  Coconut oil it is not cheap and so it is more cost effective to use C8 oil. The effect of coconut oil (CO) was shown earlier on in this post, in the above line graph, where the triangle represents coconut oil.
Coconut oil, counter intuitively, actually lowers your blood cholesterol, so it actually is a healthy oil, but if it is the ketone BHB you are after, it does not look the best choice.
It is possible that coconut oil does something clever that is unrelated to BHB.

Underlying Mode of Action
By investigating all the modes of action of BHB, this may lead to a more effective therapy. BHB is a signalling molecule and if you know which of its many effects is the key one, you may find an alternative signalling molecule that gives a more potent result.
I have a good effect from C8/Ketoforce, but I would like more of the same; but without the full ketogenic diet and not causing a problem with excess sodium, potassium, calcium or magnesium.

In the coming posts we will look into BHB's other modes of action. It will get quite interesting and we will see how one might even treat psoriasis and Multiple Sclerosis with BHB, because it is an activator of the niacin receptor HCA2. There is a potent HCA2 agonist drug, dimethyl fumarate.