UA-45667900-1

Wednesday, 6 May 2020

Psychobiotics (PS128) for Autism, Stereotypy and Sometimes Effective Therapies for what might be SIBO (Rifaximin and Herbal)




By 品璉 - originally posted to Flickr as [1]This file has been extracted from another file: Taipei panorama.jpg, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=79310952
Taipei, home to Lactobacillus plantarum PS128, isolated from fu-tsai, which is a spontaneously fermented mustard product


Our reader Prada is a fan of the Biogaia Gastrus probiotic and did comment recently that her doctor does not believe in SIBO (Small Intestinal Bacterial Overgrowth).  We know that many doctors, particularly in English-speaking countries, believe that probiotics have no serious medical value. Many autism parents think their child has SIBO and give them probiotics, among other therapies.

Unless there is a consistently reliable diagnostic test that is affordable and widely available, you inevitably get the situation where patients are convinced that they have a condition (SIBO, PANS/PANDAS, Fibromyalgia etc) while their local doctor thinks it is all in their imagination.

When it comes to probiotic bacteria as a therapy, Italian doctors take them entirely seriously, while many English-speaking doctors regard them as little more than a placebo.  I discovered to my surprise 20 years ago that some really do work.

One reader of this blog in Italy was recommended the new Taiwanese-developed “Psychobiotic” Neuraxbio (Lactobacillus plantarum PS128) by her gastroenterologist and found it was beneficial for her child’s stereotypy. Anyway, her enthusiasm brought me back to Psychobiotics.

I did consider writing a post a while back on Psychobiotics, which are probiotic bacteria that can provide reliable modulation of something useful inside the brain and may have nothing to do with treating GI problems.  It is a nice idea, but the problem is the “reliable” part. In this blog we have already seen that in some people certain commercially available probiotics can have a benefit on behaviour. The problem is that in most people there was either no effect, or actually a negative effect.

There is a small probiotic company in Taiwan, called Bened, that is developing products specifically targeting neurological conditions, including: -

·        Depression
·        Autism
·        ADHD
·        Parkinson’s disease

In 2016 they patented their first product, Lactobacillus plantarum PS128 (isolated from fu-tsai) and started selling it in Asia, where it is widely available and now it is sold in Europe and the US.

In Hong Kong it is sold as “Smart Kids Probiotics” (智樂益生素), under the brand Boost & Guard (補健).

In France it is sold as Neurobiotique, in Italy as Neuraxbio and in the US as Solace.  The US vendor has an easy to read brochure


For readers in the Balkans, PS128 is also coming your way soon, Corona virus permitting.


In Bened’s view, the current opportunities are: -

·        Psychobiotics, that regulate both serotonin and dopamine and can treat anxiety and depression.  (Lactobacillus plantarum PS128)

“Chronic administration of Lactobacillus plantarum PS128 significantly ameliorates anxiety and depression-like behaviors, increases dopaminergic activity in the prefrontal cortex, and reduced stress-induced elevation of serum corticosterone and inflammatory cytokine levels in mice subjected to early maternal separation. Oral administration with Lactobacillus plantarum PS128 significantly decreases visceral hypersensitivity in a rat animal model. Lactobacillus plantarum PS128 shows potential for irritable bowel syndrome (IBS) treatment.”

·        Immunobiotics, that rebalance the production of Th1/Th2 cytokines (Lactococcus lactis A17)

“In vitro experiment reveals cytokines IFN-γ production by human peripheral blood mononuclear cells stimulated with Lactococcus lactis A17 is higher compared with those with other 17 Lactic acid bacteria strains, including Lactobacillus rhamnosus GG and Lactobacillus casei strain Shirota. The Ovalbumin (OVA)-sensitized BALB/c mouse model was further conducted to further examine the Immunomodulatory activities of A17. Repression of NOD-1, NOD-2, TLR-4 production”

·        Metabolicbiotics, that reduce weight, cholesterol and triglycerides in those with a high fat diet (Lactobacillus plantarum K21)

“Supplementation of Lactobacillus plantarum K21 appeared to alleviate body weight gain and epididymal fat mass accumulation, reduce plasma leptin levels, decrease cholesterol and triglyceride levels, and mitigate liver damage in diet-induced obese mice. In addition, Lactobacillus plantarum K21 supplementation strengthens intestinal permeability and modulates the amount of Lactobacillus spp., Bifidobacterium spp., and Clostridium perfringens in the cecal contents of diet-induced obese mice. Dietary intake of Lactobacillus plantarum K21 does protect against the onset of high-fat diet induced obesity through multiple mechanisms of action.”

  
What does Lactobacillus PS128 do?

The research suggests that PS128 affects serotonin and dopamine while also being anti-inflammatory by reducing the expression of the inflammatory cytokine IL-6 and increasing the expression of the anti-inflammatory cytokine IL-10.  In the jargon, it shifts the Th1/Th2 balance.

Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. 

 Highlights


·        We found a Lactobacillus plantarum strain PS128 changed emotional behaviors.
·        PS128 reduced depression-like behavior in ELS mice.
·        PS128 reduced anxiety-like behavior in normal adult mice.
·        PS128 modulated prefrontal cortical serotonergic and dopaminergic systems.

  

Ingestion of specific probiotics, namely "psychobiotics", produces psychotropic effects on behavior and affects the hypothalamic-pituitary-adrenal axis and neurochemicals in the brain. We examined the psychotropic effects of a potential psychobiotic bacterium, Lactobacillus plantarum strain PS128 (PS128), on mice subjected to early life stress (ELS) and on naïve adult mice. Behavioral tests revealed that chronic ingestion of PS128 increased the locomotor activities in both ELS and naïve adult mice in the open field test. In the elevated plus maze, PS128 significantly reduced the anxiety-like behaviors in naïve adult mice but not in the ELS mice; whereas the depression-like behaviors were reduced in ELS mice but not in naïve mice in forced swimming test and sucrose preference test. PS128 administration also reduced ELS-induced elevation of serum corticosterone under both basal and stressed states but had no effect on naïve mice. In addition, PS128 reduced inflammatory cytokine levels and increased anti-inflammatory cytokine level in the serum of ELS mice. Furthermore, the dopamine level in the prefrontal cortex (PFC) was significantly increased in PS128 treated ELS and naïve adult mice whereas serotonin (5-HT) level was increased only in the naïve adult mice. These results suggest that chronic ingestion of PS128 could ameliorate anxiety- and depression-like behaviors and modulate neurochemicals related to affective disorders. Thus PS128 shows psychotropic properties and has great potential for improving stress-related symptoms.

Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice.


 

Probiotics, defined as live bacteria or bacterial products, confer a significant health benefit to the host, including amelioration of anxiety-like behavior and psychiatric illnesses. Here we administered Lactobacillus plantarum PS128 (PS128) to a germ-free (GF) mouse model to investigate the impact of the gut-brain axis on emotional behaviors. First, we demonstrated that chronic administration of live PS128 showed no adverse effects on physical health. Then, we found that administration of live PS128 significantly increased the total distance travelled in the open field test and decreased the time spent in the closed arm in the elevated plus maze test, whereas the administration of PS128 had no significant effects in the depression-like behaviors of GF mice. Also, chronic live PS128 ingestion significantly increased the levels of both serotonin and dopamine in the striatum, but not in the prefrontal cortex or hippocampus. These results suggest that the chronic administration of PS128 is safe and could induce changes in emotional behaviors. The behavioral changes are correlated with the increase in the monoamine neurotransmitters in the striatum. These findings suggest that daily intake of the L. plantarum strain PS128 could improve anxiety-like behaviors and may be helpful in ameliorating neuropsychiatric disorders.


New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis


Lactobacillus plantarum is a non-gas-producing lactic acid bacterium that is generally regarded as safe (GRAS) with Qualified Presumption of Safety (QPS) status. Although traditionally used for dairy, meat and vegetable fermentation, L. plantarum is gaining increasing significance as a probiotic. With the newly acclaimed gut-heart-brain axis, strains of L. plantarum have proven to be a valuable species for the development of probiotics, with various beneficial effects on gut health, metabolic disorders and brain health. In this review, the classification and taxonomy, and the relation of these with safety aspects are introduced. Characteristics of L. plantarum to fulfil the criteria as a probiotic are discussed. Emphasis are also given to the beneficial functions of L. plantarum in gut disorders such as inflammatory bowel diseases, metabolic syndromes, dyslipidemia, hypercholesteromia, obesity, and diabetes, and brain health aspects involving psychological disorders.


Psychobiotics

According to the definition by WHO, mental health is an integral and essential component of health, a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity. Furthermore, mental health is more than just the absence of mental disorders or disabilities (WHO, 2016). Major depressive disorder and anxiety disorders are debilitating illnesses that are rising as a global burden of disease (Whiteford et al., 2015; Logan et al., 2016). Dr. Dinan and colleagues defined a new group of bacteria, termed psychobiotics, as ‘live organisms that produce health benefits in patients suffering from psychiatric illness when ingested in adequate amounts’ and the ingestion of psychobiotics may induce psychotropic effects on behavior and additional neurochemicals in the brain (Dinan et al., 2013). This concept has shed light on microbe-based psychopharmacology. The human intestine has a large surface area, ranging from 30 to 400 cubic meters (Perez-Lopez et al., 2016), and is inhabited by 1013 to 1014 microorganisms. The number of microorganisms is 10 times greater than that of human cells, and the encapsulated genetic material exceeds the human genome content by 150-fold (de Vos and de Vos, 2012; Lozupone et al., 2012; Dinan et al., 2013). Because the large number of microorganisms live with human, it is logical to infer that associated microorganisms may play roles in human health and even in mental health. Considering that the gut-brain axis is a new concept and the applications of probiotics to enhance mental health is at its infancy, only few strains of L. plantarum have been investigated for this purpose. One of the more prominent strains of L. plantarum investigated as a psychobiotic is L. plantarum PS128 (Liu et al., 2016a, 2016b). The psychotropic effects of L. plantarum PS128 were investigated in an early life stress (ELS) mouse model. ELS negatively impacts brain development and results in behavioral changes in adulthood (Lupien et al., 2009). Maternal separation triggers ELS in rodents (O’Mahony et al., 2011). Mice that experience maternal separation exhibit lasting behavioral abnormalities, enhanced stress responses, increased anxiety-like and depression-like behaviors, elevated HPA reactivity, and altered neurochemical expression (Cryan and Holmes, 2005). Several behavior tests were employed to evaluate the effects of L. plantarum PS128 on abnormal behaviors, namely the sucrose preference test (SPT) and forced swimming test (FST). L. plantarum PS128 at a daily dose of 109 CFU/mouse reduced ELS-induced depression-like behaviors (Liu et al., 2016b). Maternal separation-triggered stress responses are evidenced by elevated levels of corticosterone before and after FST stress treatment. L. plantarum PS128 significantly reduced corticosterone levels at baseline and after FST, indicating that PS128 normalizes the HPA axis. Elevated serum levels of IL-6 are often observed in people experiencing childhood stress (Coelho et al., 2014). Modulation of IL-6 expression also potentiates the beneficial effects of L. plantarum PS128 on depression. Reduced levels of dopamine (DA) and serotonin (5-HT) and increased turnover rates of DA and 5-HT have been observed in the prefrontal cortex (PFC) of ELS mice. L. plantarum PS128 reversed these changes to a status similar to normal control mice, demonstrating the potential of PS128 as a psychobiotic to improve mental health. L. plantarum C29 was reported to protect memory deficit induced by scopolamine (Jung et al., 2012), D-galactose (Woo et al., 2014), aging (Jeong et al., 2015), and IBD (Lee et al., 2018). Increased expression of derived neurotrophic factor (BNDF) was observed in the above studies. BDNF protein is widely distributed throughout the adult brain in almost all cortical areas and was believed to be necessary for the continued survival and phenotypic maintenance of mature, fully developed neurons. In review of Zuccato and Cattaneo (2009), the levels of BDNF in brain were decreased in neurodegenerative diseases, Alzheimer disease, Parkinson disease, and Huntington disease (Zuccato and Cattaneo, 2009). The protective effects of L. plantarum C29 on memory deficit may attribute to the ability to elevate BDNF in brain


Does Lactobacillus PS128 work for “autism”?

People understandably assume a product should do what it says.  Probiotics to treat GI problems from diarrhea to IBS to IBD are pretty well researched and though some are expensive (e.g. VSL#3, Vivomixx) they do work for many people.

Some people use Biogaia Gastrus as a Pyschobiotic with success and our reader Prada has joined that group.  The only way to find out is to try it, but in the case of Biogaia Gastrus it actually makes some people much worse.

There actually is a published study investigating the effect of Lactobacillus plantarum PS128 on Children with Autism.

The study suggests that our reader in Italy and the people with the testimonials in US version of PS128 are not just exceptions.

Effects of Lactobacillus plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized,Double-Blind, Placebo-Controlled Trial


This four-week, randomized, double-blind, placebo-controlled study investigated the effects of Lactobacillus plantarum PS128 (PS128) on boys with autism spectrum disorder (ASD) aged 7–15 in Taiwan. All subjects fulfilled the criteria for ASD diagnosis of DSM-V and the Autism Diagnostic Interview-Revised (ADI-R). Questionnaires used for the primary outcome measure include the Autism Behavior Checklist-Taiwan version (ABC-T), the Social Responsiveness Scale (SRS) and the Child Behavior Checklist (CBCL). The Swanson, Nolan, and Pelham-IV-Taiwan version (SNAP-IV) and the Clinical Global Impression-improvement (CGI-I) were used for the secondary outcome measure. The results showed that PS128 ameliorated opposition/defiance behaviors, and that the total score of SNAP-IV for younger children (aged 7−12) improved significantly compared with the placebo group. Additionally, several elements were also notably improved in the PS128 group after 28-day consumption of PS128. Further studies are needed to better clarify the effects of PS128 for younger children with ASD on broader symptoms.

I think the following study is relevant to our Italian reader, for whom NAC did not benefit stereotypy, but PS128 did.

I did mention to her the Tourette’s type autism, that was studied in Siena. In these people a dopamine disorder causes the repetitive behavior, so the behaviors are really better described as tics than stereotypy.  Note that a serotonin agonist can cause a dopamine driven tic.

  

Inflammatory Response to GAS (Group A Strep) and Dysmaturational Syndrome (Tourette’s Syndrome with Autism “Recovery” by 6 Years Old)


Lactobacillus plantarum PS128 ameliorates2,5-Dimethoxy-4-iodoamphetamine-induced tic-like behaviors via its influenceson the microbiota–gut-brain-axis


Highlights


Serotonin receptor agonist DOI causes tic-like behaviors and gut dysbiosis in rat.
DOI triggers hyperactive signaling in mesocortical and nigrostriatal pathways.
PS128 alleviates DOI-induced behavior and hyperactive signaling.
PS128 modulates enteric serotonergic system and stabilizes gut microbiota.
PS128 strengthens the microbiota–gut–brain axis function of the host.

 

Abstract


We previously reported a novel psychobiotic strain of Lactobacillus plantarum PS128 (PS128) which could ameliorate anxiety-like& depression-like behaviors and modulate cerebral dopamine (DA) and serotonin (5-HT) in mice. Here, we examine the possibility of using PS128 administration to improve tic-like behaviors by using a 5-HT2A and 5-HT2C receptor agonist 2,5-Dimethoxy-4-iodoamphetamine (DOI). PS128 was orally administered to male Wistar rat for 2 weeks before two daily DOI injections. We recorded the behaviors immediately after the second DOI injection and compared the results with control and haloperidol treatment groups. PS128 significantly reduced tic-like behaviors and pre-pulse inhibition deficit in a threshold-dose of 109 CFU per day. Brain tissue analysis showed that DOI induced abnormal DA efflux in the striatum and prefrontal cortex, while PS128 ingestion improved DA metabolism and increased norepinephrine (NE) levels in these two regions. In addition, PS128 ingestion increased DA transporter and β-arrestin expressions and decreased DOI-induced phosphorylation of DA and cAMP regulated phosphoprotein of molecular weight 32 kDa (DARPP-32) at Thr34 and extracellular regulated protein kinases (ERK). PS128 ingestion also modulated peripheral 5-HT levels and shaped the cecal microbiota composition, which helps to alleviate DOI-induced dysbiosis. These results suggested that PS128 ameliorated DOI-induced tic-like hyper-active behaviors via stabilizing cerebral dopaminergic pathways through its modulation of host’s microbiota–gut–brain axis. Thus, we believe there are potentials for utilizing psychobiotics to improve syndromes caused by DA dysregulation in DA-related neurological disorders and movement disorders such as Tourette syndrome.


Lactobacillus PS128 clearly does benefit some people. It does have an effect on GI problems, but it may well benefit some people who have no GI problems.  It is specifically targeted at the brain, not the gut.

If available locally it is worth a trial.

Is it going to make some people “worse”?  It affects serotonin and dopamine and it is “anti-inflammatory” (raises IL-10 and lowers 1L-6), so some people undoubtedly will not be compatible.

It is not a cheap product, but is sold to be refrigerated and contains 30 billion colony forming units (CFU).  It looks like a serious probiotic like VSL#3, Vivomixx and Biogaia.

People are making home-made yogurt with Biogaia Protectis and Biogaia Gastrus, so if Lactobacillus PS128 is effective but looks pricey, you can make your own. Lactobacillus bacteria grow well in milk

Some yoghurts have Lactobacillus rhamnosus added.


Making fermented milk products is actually very easy, this how you can grow your own Lactobacillus PS128.

I can envisage adding Lactobacillus PS128 fermented in milk to Monty’s breakfast yoghurt.

The other possible reason that Lactobacillus PS128 helped our Italian reader’s daughter is its effect on serotonin.

Some people find that SSRI drugs like Prozac reduce stereotypy along with anxiety.  SSRI drugs can have side effects and may not be an ideal therapy for stereotypy.

Research in apes supports the fact that some people find inositol reduces stereotypy.  Inositol is a naturally occurring sugar found in the brain that acts both as a messenger and a precursor to other neurotransmitters. The inositol trisphosphate receptor (IP3R) is a Ca2+ channel activated by inositol trisphosphate (IP3).  IP3R appears to be a downstream nexus where many different types of autism converge.

Inositol is used to treat PCOS due to its metabolic effects.

Inositol appears to indirectly have an effect on serotonin, but it gets very complicated.









As you would expect, the serotine-type stereotypy is the result of one specific receptor.  It appears to be 5-HT7 or 5-HT1A.


An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT7 and 5-HT1A Receptor Partial Agonist That Corrects Motor Stereotypy in Mouse Models



Stereotypy (e.g., repetitive hand waving) is a key phenotype of autism spectrum disorder, Fragile X and Rett syndromes, and other neuropsychiatric disorders, and its severity correlates with cognitive and attention deficits. There are no effective treatments, however, for stereotypy. Perturbation of serotonin (5-HT) neurotransmission contributes to stereotypy, suggesting that distinct 5-HT receptors may be pharmacotherapeutic targets to treat stereotypy and related neuropsychiatric symptoms. For example, preclinical studies indicate that 5-HT7 receptor activation corrects deficits in mouse models of Fragile X and Rett syndromes, and clinical trials for autism are underway with buspirone, a 5-HT1A partial agonist with relevant affinity at 5-HT7 receptors. Herein, we report the synthesis, in vitro molecular pharmacology, behavioral pharmacology, and pharmacokinetic parameters in mice after subcutaneous and oral administration of (+)-5-(2′-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine ((+)-5-FPT), a new, dual partial agonist targeting both 5-HT7 (Ki = 5.8 nM, EC50 = 34 nM) and 5-HT1A (Ki = 22 nM, EC50 = 40 nM) receptors. Three unique, heterogeneous mouse models were used to assess the efficacy of (+)-5-FPT to reduce stereotypy: idiopathic jumping in C58/J mice, repetitive body rotations in C57BL/6J mice treated with the NMDA antagonist, MK-801, and repetitive head twitching in C57BL/6J mice treated with the 5-HT2 agonist, DOI. Systemic (+)-5-FPT potently and efficaciously reduced or eliminated stereotypy in each of the mouse models without altering locomotor behavior on its own, and additional tests showed that (+)-5-FPT, at the highest behaviorally active dose tested, enhanced social interaction and did not cause behaviors indicative of serotonin syndrome. These data suggest that (+)-5-FPT is a promising medication for treating stereotypy in psychiatric disorders


Efficacy of Low-Dose Buspirone for Restricted and Repetitive Behavior in Young Children with Autism Spectrum Disorder: A  Randomized Trial 


Children 2-6 years of age with ASD (N = 166) were randomized to receive placebo or 2.5 or 5.0 mg of buspirone twice daily. The primary objective was to evaluate the effects of 24 weeks of buspirone on the Autism Diagnostic Observation Schedule (ADOS) Composite Total Score. Secondary objectives included evaluating the effects of buspirone on social competence, repetitive behaviors, language, sensory dysfunction, and anxiety and to assess side effects. Positron emission tomography measures of tryptophan metabolism and blood serotonin concentrations were assessed as predictors of buspirone efficacy.

Results


There was no difference in the ADOS Composite Total Score between baseline and 24 weeks among the 3 treatment groups (P = .400); however, the ADOS Restricted and Repetitive Behavior score showed a time-by-treatment effect (P = .006); the 2.5-mg buspirone group showed significant improvement (P = .003), whereas placebo and 5.0-mg buspirone groups showed no change. Children in the 2.5-mg buspirone group were more likely to improve if they had fewer foci of increased brain tryptophan metabolism on positron emission tomography (P = .018) or if they showed normal levels of blood serotonin (P = .044). Adverse events did not differ significantly among treatment groups.

Conclusions


Treatment with 2.5 mg of buspirone in young children with ASD might be a useful adjunct therapy to target restrictive and repetitive behaviors in conjunction with behavioral interventions.
  

Stereotypies in Captive Primates and the Use of Inositol: Lessons from Obsessive–Compulsive Disorder in Humans


Animal stereotypies have long been used in the study of obsessive–compulsive disorder (OCD) in humans. These studies have led to the understanding of some of the molecular pathways in the disorder and the use of selective serotonin reuptake inhibitors and myo-inositol in the treatment of these conditions. If animal models, especially nonhuman primate models, were used to study human disorders and if the resulting treatments were successful, then conversely one should be able to treat nonhuman primate stereotypies with similar methods. We here summarize animal models of OCD (including nonhuman primate models) and human OCD treatments, and using successful human treatment by myo-inositol as models, recommend the use of myo-inositol in good captive management practice and the treatment of nonhuman primate stereotypies. We believe that this would be particularly useful in the treatment of stereotypies in nonhuman primates because they are physiologically so similar to humans.

Inositol holds much promise in the treatment and prevention of stereotypic behavior, and although much research is required to understand the molecular mechanisms behind its mode of action and the reason for failure in 30 % of human cases, its use does mean the possibility of treatment and prevention in 60–70 % of cases that would otherwise be untreatable.




Back to SIBO

Many people think their child with autism has SIBO (Small intestinal bacterial overgrowth). Most likely some do and some do not.
To diagnose SIBO you need a breath test

Here is what Johns Hopkins have to say about SIBO: -


Our gastroenterologists (doctors who specialize in the digestive system) diagnose SIBO with a lactulose breath test. For the test, you will swallow a drink containing the sugar lactulose. Next, you will breathe into a balloon approximately every 15 minutes over the course of three hours. Each time, we remove the breath sample from the balloon and test it. SIBO may be present if your breath sample contains hydrogen or methane shortly after drinking the solution.

Treatment

·         hydrogen-predominant SIBO: The primary treatment is the antibiotic rifaximin.

·         methane-predominant SIBO This type of SIBO is harder to treat, and it may take longer to respond to treatment. We use rifaximin plus neomycin for these cases.

·         recurrent SIBO: We closely monitor you for a recurrence of SIBO. If it happens, you will benefit from our experience treating the disease. We have experience with formulations of antimicrobial herbs, which can be used to treat recurrences and as an alternative for initial treatment of hydrogen- or methane-predominant SIBO.

As part of your treatment, we recommend following a FODMAP (low fermentable oligosaccharides, disaccharides, monosaccharides and polyols) diet and consulting with a nutritionist.



The symptoms of SIBO are not unique to SIBO
SIBO is an abnormal number of bacteria in the small intestine that can lead to:
·         bloating and increased passing of gas (flatulence)
·         diarrhea or constipation
·         abdominal pain
·         nausea
·         fatigue

What are SIBO risk factors?

Structural or anatomic abnormalities may affect normal movement of the small intestine (motility). Stasis, or lack of movement, can lead to bacterial imbalance. This can occur if you:
·         Have diverticulosis — tiny bulging pouches (diverticula) in the small intestine
·         Had surgery that changed the small intestine’s structure, such as Roux-en-Y gastric bypass surgery, or surgery on the right colon with removal of the ileocecal valve, or surgery on the last part of the small bowel.
·         Have adhesions (scar tissue) that developed after radiation therapy or after multiple abdominal surgeries
·         Have amyloidosis (a buildup of amyloid protein deposits) — deposits can accumulate in the small intestine and change its structure
Use of certain medications could be linked to SIBO. These include:
·         Narcotic medications
·         Anti-spasm medications for irritable bowel syndrome (IBS), such as hyoscyamine or dicyclomine
·         Long-term use of proton pump inhibitors (PPIs) — medications that decrease acid in the stomach to control heartburn
·         Frequent use of antibiotics, which may alter the bacteria in the small bowel
Chronic systemic conditions can cause motility issues. If you have these conditions, you may be at a higher risk for SIBO:
·         Diabetes
·         Lupus
·         Scleroderma or connective tissue disorders


What is the problem with rifaximin?

Rifaximin is a generic antibiotic used to treat traveler’s diarrhea, irritable bowel syndrome and SIBO.

In much of the world Rifaximin is very cheap, it costs a few dollars/euros where I live, but in the US it costs thousands of dollars a year.

So, the land of the free is where big pharma is free to make obscene profit margins, as they do even with life-saving drugs like insulin.  In developed countries Type-1 diabetic people get their insulin free and there is universal healthcare.

There are many other drug options other than Rifaximin and in the study below they found some herbal treatments as effective as Rifaximin.



Herbal Therapy Is Equivalent to Rifaximin for the Treatment of Small Intestinal Bacterial Overgrowth


Objective:
Patients with small intestine bacterial overgrowth (SIBO) have chronic intestinal and extraintestinal symptomatology which adversely affects their quality of life. Present treatment of SIBO is limited to oral antibiotics with variable success. A growing number of patients are interested in using complementary and alternative therapies for their gastrointestinal health. The objective was to determine the remission rate of SIBO using either the antibiotic rifaximin or herbals in a tertiary care referral gastroenterology practice.

Design:

One hundred and four patients who tested positive for newly diagnosed SIBO by lactulose breath testing (LBT) were offered either rifaximin 1200 mg daily vs herbal therapy for 4 weeks with repeat LBT post-treatment.

Results:

Three hundred ninety-six patients underwent LBT for suspected SIBO, of which 251 (63.4%) were positive 165 underwent treatment and 104 had a follow-up LBT. Of the 37 patients who received herbal therapy, 17 (46%) had a negative follow-up LBT compared to 23/67 (34%) of rifaximin users (P=.24). The odds ratio of having a negative LBT after taking herbal therapy as compared to rifaximin was 1.85 (CI=0.77-4.41, P=.17) once adjusted for age, gender, SIBO risk factors and IBS status. Fourteen of the 44 (31.8%) rifaximin non-responders were offered herbal rescue therapy, with 8 of the 14 (57.1%) having a negative LBT after completing the rescue herbal therapy, while 10 non-responders were offered triple antibiotics with 6 responding (60%, P=.89). Adverse effects were reported among the rifaximin treated arm including 1 case of anaphylaxis, 2 cases of hives, 2 cases of diarrhea and 1 case of Clostridium difficile. Only one case of diarrhea was reported in the herbal therapy arm, which did not reach statistical significance (P=.22).

Conclusion:

SIBO is widely prevalent in a tertiary referral gastroenterology practice. Herbal therapies are at least as effective as rifaximin for resolution of SIBO by LBT. Herbals also appear to be as effective as triple antibiotic therapy for SIBO rescue therapy for rifaximin non-responders. Further, prospective studies are needed to validate these findings and explore additional alternative therapies in patients with refractory SIBO

Table 1

Conditions That Predispose Toward the Development of Small Intestine Bacterial Overgrowth

Achlorhydria (surgical, iatrogenic, autoimmune)
Motor abnormalities
Scleroderma
Intestinal pseudo-obstruction
Diabetic enteropathy
Vagotomy
Abnormal communication between colon and small bowel
Fistulas between colon and small bowel
Resection of ileocecal valve
Structural abnormalities
Systemic and intestinal immune deficiency states
Surgical loops (Billroth II, entero-entero anastomosis, Rou-en-Y)
Duodenal or jejunal diverticula
Partial obstruction of small bowel (stricture, adhesions, tumors)
Large small Intestine diverticulosis
Systemic diseases (celiac disease, cirrhosis, pancreatic exocrine insufficiency, non-alcoholic fatty liver disease)
Alcoholism

Table 2

Protective Factors That Protect Against the Development of Small Intestine Bacterial Overgrowth

• Gastric acid
• Pancreatic enzymes
• Bile acids
• Cholecystectomy
• Motility
• Migrating motor complex
• Biofilm
• Secretory immunoglobulin A

Table 3

Extrinsic Factors That Alter the Gut Microbiome and May Influence the Development of Small Intestine Bacterial Overgrowth

FODMAPsa (fructose, lactose, galactans, fructans, sugar alcohols)
Proton pump inhibitors
Anti-motility agents
Fiber
Prebiotics
Probiotics
Antibiotics

Table 4

Antibiotic Regimens Used for Small Intestine Bacterial Overgrowth

Agent                                        Dose                Frequency
Amoxicillin-clavulanate               500 mg             3 times/day
Cephalexin                                250 mg             4 times/day
Chloramphenicol                       250 mg             4 times/day
Ciprofloxacin                            500 mg             twice daily
Doxycycline                              100 mg             twice daily
Metronidazole                           250 mg             3 times/day
Neomycin                                 500 mg             twice daily
Norfloxacin                               400 mg             twice daily
Rifaximin                                  400 mg             3 times/day
Tetracycline                               250 mg             4 times/day
Trimethoprim-                            1 double-          twice daily
Sulfamethoxazole                      strength tablet





Conclusion

I think PS-128 is very likely to be a winner for many people diagnosed with Tourette’s syndrome.

Repetitive behaviors in autism that are caused by a dopamine anomaly may well respond to PS-128. Note that a serotonin anomaly can cause a dopamine anomaly.

Undoubtedly, some people with autism are going to develop a motor/verbal tic when they take PS-128.  They should stop taking it and the tic should fade away, just like the negative reaction to Biogaia Gastrus fades away in those so affected. 

Anxiety is a common feature in autism, but has numerous underlying mechanisms, so I think PS-128 will help some and not others.  It is certainly worth trying.

Tics and stereotypy get confused and the causes may indeed overlap.  Dopamine anomalies can lead to tics and movement disorders.  Serotonin anomalies can lead to repetitive behaviors and of course anxiety.  Oxidative stress can lead to stereotypy and even compulsive behavior like Trichotillomania (pulling out your own hair).  

Autoimmune encephalopathy can give symptoms of tics, OCD and/or stereotypy, and even schizophrenia depending on which receptors in the brain are affected - PANS/PANDAS is a subtype of autoimmune encephalopathy.

·        Low dose Buspirone. It is not an SSRI, but this anxiety medicine at very low doses (2.5 to 5 mg) looks interesting for serotonin-type stereotypy
·        Inositol (it’s cheap and OTC)
·        Prednisone for Autoimmune encephalopathy

You might think the supplement 5HTP would help with the serotin type of stereotypy; 5HTP is a precursor of serotonin that is sold widely for anxiety etc.  Long term use may cause you problems.

5-HTP efficacy and contraindications


The most significant side effects and adverse reactions may occur with long-term use (many months or longer). Administration of 5-HTP alone depletes catecholamines (dopamine, norepinephrine, and epinephrine). When dopamine depletion is great enough, 5-HTP will no longer function.  If other centrally acting monoamine-related disease processes involving catecholamines are present, administration of 5-HTP alone may deplete dopamine, norepinephrine and epinephrine thereby exacerbating these conditions


Some doctors and indeed autism self-advocates think that stereotypy is a healthy calming behavior.  These autism self-advocates tend to be the ones that had a terrible time during their school years, because they were not accepted and now feel that qualifies them to give advice to others.  I not so sure they are right, I would rather take autism advice from happy/successful Aspies, rather than bitter ones.

I think that uncontrollable stereotypy gets in the way of normal life and learning in particular; if its origin is biological, it can be treated.  Since there are multiple possible mechanisms at work, it can take time to find your effective therapy.  As usual, perseverance yields results in most cases.

Back to the SIBO part of this post

I think most people with intestinal dysbiosis do not have SIBO.  If you live in the US, it looks quite easy to get a breath test for SIBO.

Rifaximin seems to benefit many people with autism and GI problems; they may well not have SIBO.  For people outside the US, Rifaximin looks a good choice, for recurring use.  Our reader Maja is a big fan of Rifaximin for her daughter.

If you have to pay thousands of dollars a year for Rifaximin, you may want to look at both the drug and herbal alternatives.

For SIBO caused by long term use of PPIs (acid reducing drugs) you can try alternate day dosing, or the old remedy of drinking diluted apple cider vinegar.  Both methods should increase acidity in the small intestine making it hostile to unwanted bacteria, the way nature intended.  If you drink apple cider vinegar you have to rinse your mouth out afterwards or you will damage your teeth.

Probiotics have been in widespread use to treat GI problems in some countries for half a century.  That is plenty time to judge their effectiveness, if people care to look.

Probiotics have been shown to have far reaching effects beyond the gut and this causes many people to have serious doubts.  How can your gut affect your brain, your eczema or your asthma?

When it comes to the brain, the research has proved that there is bidirectional communication between the brain and the gut via the vagus nerve.  Sever the vagus nerve (which used to be a medical procedure for IBS) and the effect is lost.

Many probiotics sold lack potency either because they were not stored correctly, and the bacteria died or because the producer has included too few bacteria to start with.

The users of Biogaia Gastrus for autism are taking 5 tablets a day, because one tablet contains only 100 million CFU.








Friday, 24 April 2020

The Ketone D-BHB as a Medical Food for Heart, Kidney and Brain Disease (Alzheimer’s, some Autism …)



 Nestle’s research centre in Lausanne, Switzerland
I did write extensively about the potential to treat some autism using the ketone BHB (beta hydroxybutyrate). This can be achieved either by following a strict ketogenic diet or just by eating medical foods that contain/produce BHB.
Some readers are now big consumers of BHB supplements and anyone taking BHB should be interested in today’s paper, that I assume was paid for by Nestlé.
Nestlé make everything from baby milk formula to George Clooney’s Nespresso.  You may not be aware that they also have a business selling medical food; they have been looking at ketones to treat Alzheimer’s for some time.  This is quite similar to Mars developing Cocoa flavanols to improve heart and brain health.
Most ketone supplements are sold to help you lose weight or boost athletic performance.  The military also uses ketones in survival rations. 
We saw that you can increase the level of ketones in your body by supplementing: -
·        MCT oil (medium chain triglyceride oil, which usually contains about 60% caprylic C8 acid and 40% capric C10 acid).  This is a product already sold by Nestlé
·        Neat caprylic acid, C8
·        BHB salts (potassium, sodium, calcium etc)
·        BHB esters (also called ketone esters KE)
These products range from expensive to very expensive.
People requiring ketones as an alternative fuel to glucose, like those with Alzheimer’s need quite large amounts of the supplements.  In Alzheimer’s a glucose transporter at the blood brain barrier is restricting the flow of glucose in blood and so the brain is starved of “fuel”.  Mitochondria in the brain can be powered by both ketones and glucose, so if not enough glucose cannot get through, you have the option to increase the amount of ketones.
Babies fed with mother’s milk are on a high ketone diet.  You can safely combine both glucose and ketones as a fuel for your body.
The news from today’s paper has already been translated to a usable therapy. 
There is growing interest in the metabolism of ketones owing to their reported benefits in neurological and more recently in cardiovascular and renal diseases. As an alternative to a very high fat ketogenic diet, ketones precursors for oral intake are being developed to achieve ketosis without the need for dietary carbohydrate restriction. Here we report that an oral D-beta-hydroxybutyrate (D-BHB) supplement is rapidly absorbed and metabolized in humans and increases blood ketones to millimolar levels. At the same dose, D-BHB is significantly more ketogenic and provides fewer calories than a racemic mixture of BHB or medium chain triglyceride. In a whole body ketone positron emission tomography pilot study, we observed that after D-BHB consumption, the ketone tracer 11C-acetoacetate is rapidly metabolized, mostly by the heart and the kidneys. Beyond brain energy rescue, this opens additional opportunities for therapeutic exploration of D-BHB supplements as a “super fuel” in cardiac and chronic kidney diseases.
One of the main benefits of ketones is their ability to act as an alternative energy source to glucose or fatty acids for production of ATP by mitochondria. Caloric restriction and intermittent fasting also produce transient mild-moderate ketosis (6, 7).
While a high dose of MCT can provide a moderate increase in blood ketones (+0.5–1.0 mM), gastrointestinal intolerance and high caloric load limit their use. Second, ketone esters (KE) made of a BHB ester linked to butanediol provide one molecule of D-BHB after digestion, with the butanediol being further metabolized by the liver to D-BHB (9). KE increase blood ketones above 1 mM but are also limited at high dose by their gastric tolerability and severe bitterness (10).
Third, perhaps the most physiologic way to raise blood ketones is via the oral intake of D-BHB itself. Exogenous D-BHB is directly absorbed into the circulation, with some of it being converted to AcAc by the liver, and both ketones being distributed throughout the body. Until recently, only racemic mixtures of dextro (D) and levo (L) BHB (D+L-BHB) were available and oral human studies with them have been reported (9, 1114). As L-BHB is not metabolized significantly into energy intermediates and is slowly excreted in the urine (9, 15), D+L-BHB would be anticipated to be less ketogenic than pure D-BHB. 
Levo, Dextro and Racemic
When certain chemicals are manufactured, they usually contain an equal mixture of the left-handed and right-handed version, this is called a racemic mixture. These versions are called enantiomers.
One enantiomer is an optical stereoisomer of another enantiomer. The two molecules are mirror images of each other, which are not superimposable - much like your left and right hand.
In the case of the chemical BHB, only the right-handed version has an effect on your body.  If you take the salt potassium BHB, half of the product has no effect other than raise your level of potassium.
Zyrtec is an antihistamine made of Cetirizine, but it is a racemic mixture.  If you want pure L-Cetirizine, you would buy Xyzal not Zyrtec.
Arbaclofen/ R-baclofen is the right-handed version of baclofen
Rezular/R-verapamil is the right-handed version of verapamil.
Back to the study:
The study compared three therapies: -

D-BHB

14.1 g of pure salts of the D enantiomer of D-BHB were used. The D-BHB supplement tested was formulated as a mixture of three salts: sodium D-beta-hydroxybutyrate, magnesium (D-beta-hydroxybutyrate and calcium (D-beta-hydroxybutyrate). Each oral serving provided 12 g D-beta-hydroxybutyric acid, 0.78 g sodium, 0.42 g magnesium, and 0.88 g calcium, citrus flavouring and sweetener (Stevia), dissolved in 150 mL of drinking water.

D+L-BHB

14.5 g of an equimolar mixture of commercial D and L beta-hydroxybutyrate salt was used (KetoCaNa, KetoSports, USA). Each serving provided a mixture of 12 g D+L-Beta-hydroxybutyric acid, 1.3 g sodium, 1.2 g calcium, orange flavoring and stevia, dissolved in 150 mL of drinking water.

MCT oil

Fifteen grams of medium chain triglyceride (MCT) (60% caprylic C8 acid and 40% capric C10 acid) emulsified in 70 mL of a 5% aqueous milk protein solution.


This chart shows the concentration of ketones in your blood plasma after taking either of the three therapies.

This chart shows the concentration of just the ketone D-BHB in your blood plasma after taking either of the three therapies.
 This chart shows the concentration of the ketone ACAc in your blood plasma after taking either of the three therapies.
  

This chart shows where the ketones are going; the chart shows the distribution of the ketone “tracer” acetoacetate (AcAc) by organ after D-BHB oral intake.  The effect is greatest on the heart and kidney, but some does reach the brain.

From the dynamic brain scan, CMRAcAc and KAcAc could be determined for all main regions of the brain and compared to baseline values previously determined in healthy young adults. Overall and compared to baseline, each region demonstrated an increase in CMRAcAc and KAcAc of ~4.7 and 2.3-fold, respectively, about 1 h after taking D-BHB. This indicated that AcAc is effectively taken by the brain and by other organs particularly the heart and the kidney.
Ketone production from an exogenous dietary source has been traditionally achieved by MCT. This requires a bolus intake to saturate the liver with MCFA, producing excess acetyl-CoA which is then transformed to AcAc and BHB, which are released into systemic circulation. The Cmax achieved with MCT is usually between 300 and 600 μM, with higher values being difficult to reach due to GI side effects and liver saturation. Here we show that D-BHB, a natural and biologically active ketone isomer, raises blood ketone Cmax above 1 mM without noticeable side effects. In comparison, an equivalent dose of D+L-BHB or MCT only achieved half this ketone level, with similar Tmax at 1 h. Thus, compared to D+L-BHB, D-BHB significantly reduces the salt intake needed to achieve the same plasma ketone response.
Results from a previous study (9) comparing KE to D+L-BHB showed that at the same dose of D-BHB equivalent, the increase blood ketone iAUC had the same magnitude, suggesting that exogenous D-BHB and KE produce similar ketosis.
Note that KE means Ketone Ester and the study (9) is this one: -

On the Metabolism of Exogenous Ketones in Humans

Ketone esters are available, but horribly expensive and taste really bad.

Conclusion
In previous posts the numerous possible beneficial modes of action of BHB were outlined. The summary post is here: -

Ketone Therapy in Autism (Summary of Parts 1-6)

In practise some people with autism seem to benefit a lot, some moderately and some not at all.
Monty, aged 16 with ASD, fits in the “moderately benefits” category.  The combination of about 20ml of caprylic acid (C8) plus a scoop of Potassium BHB powder does produce more speech.
It is not a cheap or very convenient therapy, compared the others I use.
I would agree with Nestlé that the limiting factor with BHB salts is the “salt”.  As they comment in their paper 
“compared to D+L-BHB, D-BHB significantly reduces the salt intake needed to achieve the same plasma ketone response”
Giving someone with heart disease "sodium anything" is not a good idea. A potassium salt would be safer, but even then, your heart is the limiting factor on potassium use.  Calcium salts are unwise in people with autism, because it appears to be able to upset calcium ion signalling, which would also be a potential risk in heart disease.
As I mentioned to one parent who is a big time user of BHB salts, if you switch to D-BHB you can either produce twice the ketones of regular potassium BHB, with the existing potassium load, or reduce your dosage by half and keep the same effect and save some money.
I think potassium D-BHB is good choice.  If you are taking bumetanide you may no longer need a potassium supplement (K-BHB becomes your potassium supplement).
I think people with autism and genuine mitochondrial disease are highly likely to benefit from D-BHB.  These are people who show symptoms in their entire body, i.e. lack of exercise endurance. For these people, eating (or producing via diet) large amounts of ketones will increase the production of ATP in their brains and so improve cognitive function.  D-BHB undergoes a different process to glucose, as it “converted” to ATP by the process called OXPHOS
(Oxidative phosphorylation). Some people with autism lack the enzyme complexes needed to complete OXPHOS, these people who should try D-BHB.
BHB has other beneficial effects, some relating to inflammation that seem to explain its benefit in other types of autism.  The effects were investigated here.
In the brains of people with Alzheimer’s there is decreased expression of glucose transporter 1 (GLUT 1) at the blood brain barrier. This starves the brain of glucose, which is fuel for the brain. D-BHB is an alternative fuel for mitochondria that is not dependent on GLUT 1.  People with early onset Alzheimer's would seem the best ones for this therapy, that would include many people with Down Syndrome.